Water-Bridge Mediates Recognition of mRNA Cap in eIF4E.

Structure

Bioinformatics Institute, A(∗)STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551, Singapore. Electronic address:

Published: January 2017

Ligand binding pockets in proteins contain water molecules, which play important roles in modulating protein-ligand interactions. Available crystallographic data for the 5' mRNA cap-binding pocket of the translation initiation factor protein eIF4E shows several structurally conserved waters, which also persist in molecular dynamics simulations. These waters engage an intricate hydrogen-bond network between the cap and protein. Two crystallographic waters in the cleft of the pocket show a high degree of conservation and bridge two residues, which are part of an evolutionarily conserved scaffold. This appears to be a preformed recognition module for the cap with the two structural waters facilitating an efficient interaction. This is also recapitulated in a new crystal structure of the apo protein. These findings open new windows for the design and screening of compounds targeting eIF4E.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2016.11.006DOI Listing

Publication Analysis

Top Keywords

water-bridge mediates
4
mediates recognition
4
recognition mrna
4
mrna cap
4
cap eif4e
4
eif4e ligand
4
ligand binding
4
binding pockets
4
pockets proteins
4
proteins water
4

Similar Publications

Cezanne-2 (Cez2) is a deubiquitinylating (DUB) enzyme involved in the regulation of ubiquitin-driven cellular signaling and selectively targets Lys11-linked polyubiquitin chains. As a representative member of the ovarian tumor (OTU) subfamily DUBs, it performs cysteine proteolytic isopeptide bond cleavage; however, its exact catalytic mechanism is not yet resolved. In this work, we used different computational approaches to get molecular insights into the Cezanne-2 catalytic mechanism.

View Article and Find Full Text PDF

Pore engineering is commonly used to alter the properties of metal-organic frameworks. This is achieved by incorporating different linker molecules () into the structure, generating isoreticular frameworks. CPO-27, also named MOF-74, is a prototypical material for this approach, offering the potential to modify the size of its one-dimensional pore channels and the hydrophobicity of pore walls using various linker ligands during synthesis.

View Article and Find Full Text PDF

Floating microplastics (MPs) have recently become a major concern in marine pollution; however, current filter-based technology is hardly effective for directly removing such MPs from the water surface because of specific mesh size and clogging issues. This paper introduces a new skimming concept for removing floating MPs utilizing capillary force mediated by the elevation of a hydrophilic ratchet at the air-water interface. MPs floating near the ratchet surface are spontaneously forced toward the ratchet with a concave water meniscus, driven by the Cheerios effect.

View Article and Find Full Text PDF

Alzheimer's disease is characterized by amyloid-beta aggregation and neurofibrillary tangles. Acetylcholinesterase (AChE) hydrolyses acetylcholine and induces amyloid-beta aggregation. Acetylcholinesterase inhibitors (AChEI) inhibit this aggregation by binding to AChE, making it a potential target for the treatment of AD.

View Article and Find Full Text PDF

The effects of surface hydration on capillary adhesion under nanoscale confinement.

Soft Matter

June 2022

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.

Nanoscale phenomena such as surface hydration and the molecular layering of liquids under strong nanoscale confinement play a critical role in liquid-mediated surface adhesion that is not accounted for by available models, which assume a uniform liquid density with or without considering surface forces and associated disjoining pressure effects. This work introduces an alternative theoretical description that the potential of mean force (PMF) considers the strong spatial variation of the liquid number density under nanoscale confinement. This alternative description based on the PMF predicts a dual effect of surface hydration by producing: (i) strong spatial oscillations of the local liquid density and pressure and, more importantly, (ii) a configuration-dependent liquid-solid surface energy under nanoscale confinement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!