Nanoparticles (NPs) have been shown to enhance X-ray radiotherapy and proton therapy of cancer. The effectiveness of radiation damage is enhanced in the presence of high atomic number (high-Z) NPs due to increased production of low energy, higher linear energy transfer (LET) secondary electrons when NPs are selectively internalized by tumour cells. This work quantifies the local dose enhancement produced by the high-Z ceramic oxide NPs TaO and CeO, in the target tumour, for the first time in proton therapy, by means of Geant4 simulations. The dose enhancement produced by the ceramic oxides is compared against gold NPs. The energy deposition on a nanoscale around a single nanoparticle of 100nm diameter is investigated using the Geant4-DNA extension to model particle interactions in the water medium. Enhancement of energy deposition in nano-sized shells of water, local to the NP boundary, ranging between 14% and 27% was observed for proton energies of 5MeV and 50MeV, depending on the NP material. Enhancement of electron production and energy deposition can be correlated to the direct DNA damage mechanism if the NP is in close proximity to the nucleus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2016.11.112DOI Listing

Publication Analysis

Top Keywords

dose enhancement
12
proton therapy
12
energy deposition
12
local dose
8
ceramic oxide
8
geant4 simulations
8
enhancement produced
8
enhancement
5
nps
5
energy
5

Similar Publications

Analysis of "Dose Accuracy and Reliability of a Connected Insulin Pen System".

J Diabetes Sci Technol

January 2025

Division of Endocrinology, Diabetes & Metabolism, Weill Cornell Medicine, New York, NY, USA.

In an article in the , Backfish and coauthors examined the dose accuracy and reliability of the Tempo Pen and Tempo Smart Button connected insulin pen system. This study sponsored by Eli Lilly and Company found that this system met the International Organization for Standardization 11608-1:2014 requirements for dose accuracy at a range of doses, as well as the data transfer requirements after all injections. While these results are very encouraging, they were based on simulated human factors data while data from a human factors validation study where individuals successfully dialed and administered correct doses was not reported.

View Article and Find Full Text PDF

Toward effective oxytocin interventions in autism: Overcoming challenges and harnessing opportunities.

J Psychopharmacol

January 2025

Neuromodulation Laboratory, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.

Intranasal administration of oxytocin is emerging as a potential pharmacological option for mitigating social difficulties and regulating stress in autism spectrum disorder. However, initial single-dose and multiple-dose trials showed mixed results, with some demonstrating improvements in social and repetitive behavior and others showing no benefit over placebo. This perspective aims to elucidate factors contributing to this variability and to highlight pitfalls and opportunities in the field.

View Article and Find Full Text PDF

The emergence of new variants and diverse vaccination regimens have raised uncertainty about vaccine effectiveness against SARS-CoV-2. This study aims to investigate the impact of Omicron primo-/reinfection and primary vaccination schedules on the immunogenicity of an mRNA-based booster dose over a six-month period. We conducted a prospective cohort study to assess the durability and level of antibodies of 678 healthcare workers fully vaccinated against COVID-19.

View Article and Find Full Text PDF

: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.

View Article and Find Full Text PDF

Sorafenib-Loaded Silica-Containing Redox Nanoparticle Decreases Tumorigenic Potential of Lewis Lung Carcinoma.

Pharmaceutics

January 2025

Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan.

Orally administered sorafenib has shown limited improvement in overall survival for non-small-cell lung cancer patients, likely due to poor pharmacokinetics and adverse effects, including gastrointestinal toxicity. To address these issues, we developed silica-containing antioxidant nanoparticles (siRNP) as a carrier to enhance the therapeutic efficacy of lipophilic sorafenib. Sorafenib was loaded into siRNP via dialysis (sora@siRNP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!