A comprehensive measurement of radioactivity concentrations of the primordial radionuclides U, Th and K and their decay products in the soil samples collected from the sites of Indian research stations, Bharati and Maitri, at Antarctica was carried out using gamma spectrometric method. The activity concentrations in the soil samples of Bharati site were observed to be few times higher than of Maitri site. The major contributor to radioactivity content in the soil at Bharati site is Th radionuclide in higher concentration. The gamma radiation levels based on the measured radioactivity of soil samples were calculated using the equation given in UNSCEAR 2000. The calculated radiation levels were compared with the measured values and found to correlate reasonably well. The study could be useful for the scientists working at Antarctica especially those at Indian station to take decision to avoid areas with higher radioactivity before erecting any facility for long term experiment or use.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2016.11.025DOI Listing

Publication Analysis

Top Keywords

radiation levels
12
soil samples
12
indian station
8
bharati site
8
measurements background
4
background radiation
4
indian
4
levels indian
4
bharati
4
station bharati
4

Similar Publications

Simulated low-dose dark-field radiography for detection of COVID-19 pneumonia.

PLoS One

December 2024

Chair of Biomedical Physics, Department of Physics & School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.

Background: Dark-field radiography has been proven to be a promising tool for the assessment of various lung diseases.

Purpose: To evaluate the potential of dose reduction in dark-field chest radiography for the detection of the Coronavirus SARS-CoV-2 (COVID-19) pneumonia.

Materials And Methods: Patients aged at least 18 years with a medically indicated chest computed tomography scan (CT scan) were screened for participation in a prospective study between October 2018 and December 2020.

View Article and Find Full Text PDF

Utility values of responders and nonresponders are essential inputs in cost-effectiveness studies of radiation therapy for painful bone metastases but, to our knowledge, they have not been reported separately. We sought to determine the utility values of responders and nonresponders using data from a prospective observational study on bone metastases. The original prospective observational study was conducted at 26 centers in Japan.

View Article and Find Full Text PDF

Assessment of radon level and the associated radiological risk from soil samples of quarry area at Hakim Gara, Ethiopia.

Environ Monit Assess

December 2024

School of Nuclear and Allied Sciences, University of Ghana, Atomic Campus, P.O. Box LG 80 Legon, Accra, Ghana.

Excavation of terrestrial surface of the Earth could enhance the chance of exposure to radon while gases in the underground get access to escape. This study was aimed to assess the level of radon concentration from soil samples of quarrying sites at Hakim Gara in Ethiopia using CR-39 detectors in sealed container technique. The results of the measured radon concentration level were ranging from 164.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans.

View Article and Find Full Text PDF

Mitigation of depleted uranium-induced mitochondrial damage by ethylmalonic encephalopathy 1 protein via modulation of hydrogen sulfide and glutathione pathways.

Arch Toxicol

December 2024

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.

Depleted uranium (DU) is a byproduct of uranium enrichment, which can cause heavy-metal toxicity and radiation toxicity as well as serious damage to the kidneys. However, the mechanism of renal injury induced by DU is still unclear. This study aimed to explore the role of ethylmalonic encephalopathy 1 (ETHE1) in DU-induced mitochondrial dysfunction and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!