Selecting a specific foot placement strategy to perform walking maneuvers requires the management of several competing factors, including: maintaining stability, positioning oneself to actively generate impulses, and minimizing mechanical energy requirements. These requirements are unlikely to be independent. Our purpose was to determine the impact of lateral foot placement on stability, maneuverability, and energetics during walking maneuvers. Ten able-bodied adults performed laterally-directed walking maneuvers. Mediolateral placement of the "Push-off" foot during the maneuvers was varied, ranging from a cross-over step to a side-step. We hypothesized that as mediolateral foot placement became wider, passive stability in the direction of the maneuver, the lateral impulse generated to create the maneuver, and mechanical energy cost would all increase. We also hypothesized that subjects would prefer an intermediate step width reflective of trade-offs between stability vs. both maneuverability and energy. In support of our first hypothesis, we found that as Push-off step width increased, lateral margin of stability, peak lateral impulse, and total joint work all increased. In support of our second hypothesis, we found that when subjects had no restrictions on their mediolateral foot placement, they chose a foot placement between the two extreme positions. We found a significant relationship (p<0.05) between lateral margin of stability and peak lateral impulse (r=0.773), indicating a trade-off between passive stability and the force input required to maneuver. These findings suggest that during anticipated maneuvers people select foot placement strategies that balance competing costs to maintain stability, actively generate impulses, and minimize mechanical energy costs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2016.11.034 | DOI Listing |
J Orthop Case Rep
January 2025
Department of Orthopaedic Surgery, Murup Hospital, Changwon, South Korea.
Introduction: Medial open wedge-high tibial osteotomy (MOW-HTO) is a standard procedure for treating moderate varus arthritis in active adults. The reason for its popularity is having lesser complications than other types of HTO. However, it is not devoid of challenges.
View Article and Find Full Text PDFFoot Ankle Surg
January 2025
Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India. Electronic address:
Background: Tibial bone fractures in the malleolar regions are a major concern during the early postoperative period of total ankle replacement (TAR), affecting patient outcomes such as stability and recovery. Design, placement, and anatomic misalignment of implant components can contribute to malleolar fractures. The aim of this study is to understand the influence of implant design features, including keel, peg, stem, and bar type design, and bone-implant interfacial conditions on malleolar fracture following TAR.
View Article and Find Full Text PDFJ ISAKOS
January 2025
Department of Sports Medicine, Kameda Medical Center, Kamogawa, Japan.
Objectives: We have previously shown that ultrasound-guided repair results in an accurate anchor placement and restores ankle joint stability using cadaveric models. The objective is to assess the safety and clinical outcomes of ultrasound-guided ATFL repair with or without augmentation.
Methods: Forty-nine patients with chronic lateral ankle instability underwent ultrasound-guided ATFL repair with or without augmentation.
JBJS Essent Surg Tech
January 2025
The Ohio State University College of Medicine, Columbus, Ohio.
Background: An all-inside endoscopic flexor hallucis longus (FHL) tendon transfer is indicated for the treatment of chronic, full-thickness Achilles tendon defects. The aim of this procedure is to restore function of the gastrocnemius-soleus complex while avoiding the wound complications associated with open procedures.
Description: This procedure can be performed through 2 endoscopic portals, a posteromedial portal (the working portal) and a posterolateral portal (the visualization portal).
Int J Environ Res Public Health
December 2024
Incheon Disaster Prevention Research Center, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
This study addresses occupational safety in reinforced concrete construction, an area marked by high accident rates and significant worker injury risks. By focusing on activity-body part (A-BP) combinations, this research introduces a novel framework for quantifying injury risks across construction activities. Reinforced concrete construction tasks are categorized into ten specific activities within three major work types: rebar work, formwork, and concrete placement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!