Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagens. DDR1 expression increases following kidney injury and accumulating evidence suggests that it contributes to the progression of injury. To this end, deletion of DDR1 is beneficial in ameliorating kidney injury induced by angiotensin infusion, unilateral ureteral obstruction, or nephrotoxic nephritis. Most of the beneficial effects observed in the DDR1-null mice are attributed to reduced inflammatory cell infiltration to the site of injury, suggesting that DDR1 plays a pro-inflammatory effect. The goal of this study was to determine whether, in addition to its pro-inflammatory effect, DDR1 plays a deleterious effect in kidney injury by directly regulating extracellular matrix production. We show that DDR1-null mice have reduced deposition of glomerular collagens I and IV as well as decreased proteinuria following the partial renal ablation model of kidney injury. Using mesangial cells isolated from DDR1-null mice, we show that these cells produce significantly less collagen compared to DDR1-null cells reconstituted with wild type DDR1. Moreover, mutagenesis analysis revealed that mutations in the collagen binding site or in the kinase domain significantly reduce DDR1-mediated collagen production. Finally, we provide evidence that blocking DDR1 kinase activity with an ATP-competitive small molecule inhibitor reduces collagen production. In conclusion, our studies indicate that the kinase activity of DDR1 plays a key role in DDR1-induced collagen synthesis and suggest that blocking collagen-mediated DDR1 activation may be beneficial in fibrotic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5329129PMC
http://dx.doi.org/10.1016/j.matbio.2016.11.009DOI Listing

Publication Analysis

Top Keywords

kidney injury
16
kinase activity
12
ddr1-null mice
12
ddr1 plays
12
ddr1
9
discoidin domain
8
domain receptor
8
collagen synthesis
8
collagen production
8
collagen
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!