Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoate co-polymer composition.

Bioresour Technol

Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi 110007, India; Academy of Scientific & Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi 110001, India.

Published: January 2017

Polyhydroxyalkanoate (PHA) production by Bacillus thuringiensis EGU45 was studied by co-metabolism of crude glycerol (CG) (1%, v/v), glucose (0.05-0.5%, w/v) and propionic acid (0.05-0.5%, v/v) under batch (shake flask) culture conditions. Glycerol+PA combination resulted in 15-100mg/L PHA co-polymers with a HV content of 33-81mol%. The addition of NHCl (0.5%, w/v) to CG+PA enhanced PHA production by 1.55-fold, with a HV content of 58-70mol%. The time period of incubation of PA to the feed: CG+glucose was optimized to be 3h after initiation of fermentation. The PHA contents were found to be stable at 1900-2050mg/L up scaling from 0.4 to 2.0L feed material. Biochemical characterization through GC-MS of PHA co-polymer revealed the presence of 3-hydroxydecanoate (3-HDD), 3-hydroxyoctadecanoate (3HOD), 3-hydroxyhexadecanoate (3HHD).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.11.089DOI Listing

Publication Analysis

Top Keywords

bacillus thuringiensis
8
pha production
8
pha
5
co-metabolism substrates
4
substrates bacillus
4
thuringiensis regulates
4
regulates polyhydroxyalkanoate
4
polyhydroxyalkanoate co-polymer
4
co-polymer composition
4
composition polyhydroxyalkanoate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!