Pigment epithelium-derived factor (PEDF) expression is downregulated in the kidneys of diabetic rats, and delivery of PEDF suppressed renal fibrotic factors in these animals. PEDF has multiple functions including anti-angiogenic, anti-inflammatory and antifibrotic activities. Since the mechanism underlying its antifibrotic effect remains unclear, we studied this in several murine models of renal disease. Renal PEDF levels were significantly reduced in genetic models of type 1 and type 2 diabetes (Akita and db/db, respectively), negatively correlating with Wnt signaling activity in the kidneys. In unilateral ureteral obstruction, an acute renal injury model, there were significant decreases of renal PEDF levels. The kidneys of PEDF knockout mice with ureteral obstruction displayed exacerbated expression of fibrotic and inflammatory factors, oxidative stress, tubulointerstitial fibrosis, and tubule epithelial cell apoptosis, compared to the kidneys of wild-type mice with obstruction. PEDF knockout enhanced Wnt signaling activation induced by obstruction, while PEDF inhibited the Wnt pathway-mediated fibrosis in primary renal proximal tubule epithelial cells. Additionally, oxidative stress was aggravated in renal proximal tubule epithelial cells isolated from knockout mice and suppressed by PEDF treatment of renal proximal tubule epithelial cells. PEDF also reduced oxidation-induced apoptosis in renal proximal tubule epithelial cells. Thus, the renoprotective effects of PEDF are mediated, at least partially, by inhibition of the Wnt pathway. Hence, restoration of renal PEDF levels may have therapeutic potential for renal fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313326PMC
http://dx.doi.org/10.1016/j.kint.2016.09.036DOI Listing

Publication Analysis

Top Keywords

tubule epithelial
20
renal proximal
16
proximal tubule
16
epithelial cells
16
pedf
12
renal pedf
12
pedf levels
12
renal
11
pigment epithelium-derived
8
epithelium-derived factor
8

Similar Publications

High-density lipoprotein nanoparticles spontaneously target to damaged renal tubules and alleviate renal fibrosis by remodeling the fibrotic niches.

Nat Commun

January 2025

College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.

Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization.

View Article and Find Full Text PDF

Modeling BK Virus Infection in Renal Transplant Recipients.

Viruses

December 2024

Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA.

Kidney transplant recipients require a lifelong protocol of immunosuppressive therapy to prevent graft rejection. However, these same medications leave them susceptible to opportunistic infections. One pathogen of particular concern is human polyomavirus 1, also known as BK virus (BKPyV).

View Article and Find Full Text PDF

Differential Activity and Expression of Proteasome in Seminiferous Epithelium During Mouse Spermatogenesis.

Int J Mol Sci

January 2025

Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile.

Proteasome-mediated protein degradation is essential for maintaining cellular homeostasis, particularly during spermatogenesis, where extensive cellular transformations, such as spermatid differentiation, require precise protein turnover. A key player in this process is the ubiquitin-proteasome system (UPS). This study aimed to investigate proteasome enzymatic activity at different stages of the spermatogenic cycle within the seminiferous tubules of mice and explore the regulatory mechanisms that influence its proteolytic function.

View Article and Find Full Text PDF

Exacerbation of diabetes due to F. Nucleatum LPS-induced SGLT2 overexpression in the renal proximal tubular epithelial cells.

BMC Nephrol

January 2025

Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita- ku, Okayama, 700-0914, Japan.

Background: Diabetes treatments by the control of sodium-glucose cotransporter 2 (SGLT2) is commonly conducted while there are still uncertainties about the mechanisms for the SGLT2 overexpression in kidneys with diabetes. Previously, we have reported that glomeruli and proximal tubules with diabetic nephropathy express toll-like receptor TLR2/4, and that the TLR ligand lipopolysaccharide (LPS) of periodontal pathogens have caused nephropathy in diabetic model mice. Recently, many researchers suggested that the periodontal pathogenic bacteria Fusobacterium (F.

View Article and Find Full Text PDF

Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.

Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!