Analysis and control of multi-zone sound field reproduction using modal-domain approach.

J Acoust Soc Am

Institute of Sound and Vibration Research, University of Southampton, SO17 1BJ, United Kingdom.

Published: September 2016

Multi-zone sound control aims to reproduce multiple sound fields independently and simultaneously over different spatial regions within the same space. This paper investigates the multi-zone sound control problem formulated in the modal domain using the Lagrange cost function and provides a modal-domain analysis of the problem. The Lagrange cost function is formulated to represent a quadratic objective of reproducing a desired sound field within the bright zone and with constraints on sound energy in the dark zone and global region. A fundamental problem in multi-zone reproduction is interzone sound interference, where based on the geometry of the sound zones and the desired sound field within the bright zone the achievable reproduction performance is limited. The modal-domain Lagrangian solution demonstrates the intrinsic ill-posedness of the problem, based on which a parameter, the coefficient of realisability, is developed to evaluate the reproduction limitation. The proposed reproduction method is based on controlling the interference between sound zones and sound leakage outside the sound zones, resulting in a suitable compromise between good bright zone performance and satisfactory dark zone performance. The performance of the proposed design is demonstrated through numerical simulations of two-zone reproduction in free-field and in reverberant environments.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4963084DOI Listing

Publication Analysis

Top Keywords

sound
12
multi-zone sound
12
sound field
12
bright zone
12
sound zones
12
sound control
8
lagrange cost
8
cost function
8
desired sound
8
field bright
8

Similar Publications

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

Introduction: Cardiac tamponade is a life-threatening condition resulting from fluid accumulation in the pericardial sac, leading to decreased cardiac output and shock. Various etiologies can cause cardiac tamponade, including liver cirrhosis, which may be induced by autoimmune hepatitis. Autoimmune hepatitis is a chronic inflammatory liver disease characterized by interface hepatitis, elevated transaminase levels, autoantibodies, and increased immunoglobulin G levels.

View Article and Find Full Text PDF

Background: Cochlear implants (CIs) are neuroprosthetic devices which restore hearing in severe-to-profound hearing loss through electrical stimulation of the auditory nerve. Current CIs use an externally worn audio processor. A long-term goal in the field has been to develop a device in which all components are contained within a single implant.

View Article and Find Full Text PDF

Freshwater ecosystems are highly biodiverse and important for livelihoods and economic development, but are under substantial stress. To date, comprehensive global assessments of extinction risk have not included any speciose groups primarily living in freshwaters. Consequently, data from predominantly terrestrial tetrapods are used to guide environmental policy and conservation prioritization, whereas recent proposals for target setting in freshwaters use abiotic factors.

View Article and Find Full Text PDF

In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!