Computational Tools for Aiding Rational Antibody Design.

Methods Mol Biol

Department of Statistics, University of Oxford, Oxford, UK.

Published: January 2018

Antibodies are a group of proteins responsible for mediating immune reactions in vertebrates. They are able to bind a variety of structural motifs on noxious molecules tagging them for elimination from the organism. As a result of their versatile binding properties, antibodies are currently one of the most important classes of biopharmaceuticals. In this chapter, we discuss how knowledge-based computational methods can aid experimentalists in the development of potent antibodies. When using common experimental methods for antibody development, we often know the sequence of an antibody that binds to our molecule, antigen, of interest. We may also have a structure or model of the antigen. In these cases, computational methods can help by both modeling the antibody and identifying the antibody-antigen contact residues. This information can then play a key role in the rational design of more potent antibodies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6637-0_21DOI Listing

Publication Analysis

Top Keywords

computational methods
8
potent antibodies
8
computational tools
4
tools aiding
4
aiding rational
4
antibody
4
rational antibody
4
antibody design
4
antibodies
4
design antibodies
4

Similar Publications

Current perspectives for metabolomics and lipidomics in dyslipidemia of acne vulgaris: a mini review.

Front Med (Lausanne)

January 2025

Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Acne vulgaris (AV) is a common inflammatory disorder involving the pilosebaceous unit. Many studies have reported that people with AV have higher levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-c) compared to healthy controls. Hence, they concluded that an unhealthy lipid profile is an independent risk factor for AV.

View Article and Find Full Text PDF

Plastic pollution, particularly microplastics (MPs), poses a significant global threat to ecosystems and human health, necessitating innovative remediation strategies. Biocompatible and biodegradable plastic-binding peptides (PBPs) offer a potential solution through targeted adsorption and subsequent MP detection or removal from the environment. A challenge in discovering plastic-binding peptides is the vast combinatorial space of possible peptides (, over 10 for 12-mer peptides), which far exceeds the sample sizes typically reachable by experiments or biophysics-based computational methods.

View Article and Find Full Text PDF

In functional neurological disorder (FND), there is a fundamental disconnect between an apparently intact nervous system and the individuals' ability to consistently perform motor actions, perceive sensory signals and/or access effective cognition. Metacognition, the capacity to self-evaluate cognitive performance, appears highly relevant to FND pathophysiology. Poor metacognition is a potential mechanism via which abnormal models of self and the state of the world could arise and persist unchecked.

View Article and Find Full Text PDF

Introduction: Accurate prediction of knee biomechanics during total knee replacement (TKR) surgery is crucial for optimal outcomes. This study investigates the application of machine learning (ML) techniques for real-time prediction of knee joint mechanics.

Methods: A validated finite element (FE) model of the lower limb was used to generate a dataset of knee joint kinematics, kinetics, and contact mechanics.

View Article and Find Full Text PDF

Computational new approach methods guide focused testing and enhance understanding of chlorantraniliprole toxicity across species.

Environ Toxicol Chem

January 2025

Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, MN, United States.

Diamide insecticides, specifically chlorantraniliprole (CHL), have been rising in popularity over the past decade, becoming one of the most widely used insecticide classes globally. These insecticides target the ryanodine receptor (RyR), primarily for control of lepidopteran agricultural pests. Field studies have revealed that some lepidopteran species have developed mutations where a methionine in a particular position (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!