In order to improve their MS/MS sequencing, structure of sequence-controlled synthetic polymers can be optimized based on considerations regarding their fragmentation behavior in collision-induced dissociation conditions, as demonstrated here for two digitally encoded polymer families. In poly(triazole amide)s, the main dissociation route proceeded via cleavage of the amide bond in each monomer, hence allowing the chains to be safely sequenced. However, a competitive cleavage of an ether bond in a tri(ethylene glycol) spacer placed between each coding moiety complicated MS/MS spectra while not bringing new structural information. Changing the tri(ethylene glycol) spacer to an alkyl group of the same size allowed this unwanted fragmentation pathway to be avoided, hence greatly simplifying the MS/MS reading step for such undecyl-based poly(triazole amide)s. In poly(alkoxyamine phosphodiester)s, a single dissociation pathway was achieved with repeating units containing an alkoxyamine linkage, which, by very low dissociation energy, made any other chemical bonds MS/MS-silent. Structure of these polymers was further tailored to enhance the stability of those precursor ions with a negatively charged phosphate group per monomer in order to improve their MS/MS readability. Increasing the size of both the alkyl coding moiety and the nitroxide spacer allowed sufficient distance between phosphate groups for all of them to be deprotonated simultaneously. Because the charge state of product ions increased with their polymerization degree, MS/MS spectra typically exhibited groups of fragments at one or the other side of the precursor ion depending on the original α or ω end-group they contain, allowing sequence reconstruction in a straightforward manner. Graphical Abstract ᅟ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13361-016-1543-5 | DOI Listing |
ACS Appl Mater Interfaces
October 2024
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
Maximizing the molecular information density requires simultaneously functionalizing distinct monomers and their coupling connections. However, current synthesis generally focuses on distinct monomers rather than coupling reactions because the multistep reactions significantly escalate the synthetic complexity in an exponential increase. Here, we report the two-dimensional nanoarchitectures (2DNs) of end-on oligomers, with versatile molecular structures and negative differential resistance (NDR), synthesized by programmed and surface-initiated step electrosynthesis based on the simultaneous utilization of six reactions including cross- and homocouplings.
View Article and Find Full Text PDFMacromol Rapid Commun
August 2024
Department of Earth and Planetary Sciences and Harvard Origins of Life Initiative, Harvard University, Cambridge, MA, 02138, USA.
Two key challenges in the multidisciplinary field of sequence-controlled polymers are their efficient synthesis and the establishment of correlation with polymer properties. In this context, in this paper, gradient architecture in the hydrophobic tail of an amphiphile is implemented and synthesized for a fixed hydrophilic unit (polyethylene glycol, PEG), by means of two monomers (2-hydroxypropyl methacrylate, HPMA, and diacetone acrylamide, DAAM) of contrasting reactivities. The resulting non-biochemical gradient sequence-controlled polymers are generated from a one-pot, homogeneous mixture through a PET-RAFT-PISA (photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer-polymerization-induced self-assembly) method.
View Article and Find Full Text PDFACS Nano
July 2024
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.
Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer.
View Article and Find Full Text PDFAdv Mater
September 2024
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada.
DNA nanotechnology has revolutionized the ability to position matter at the nanoscale, but the preparation of DNA-based architectures remains laborious. To facilitate the formation of custom structures, a fully automated method is reported to produce sequence- and size-defined DNA nanotubes. By programming the sequential addition of desired building blocks, rigid DX-tile-based DNA nanotubes and flexible wireframe DNA structures are attained, where the total number of possible constructs increases as a power function of the number of different units available.
View Article and Find Full Text PDFNat Commun
June 2024
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China.
To emulate the ordered arrangement of monomer units found in natural macromolecules, single-unit monomer insertion (SUMI) have emerged as a potent technique for synthesizing sequence-controlled vinyl polymers. Specifically, numerous applications necessitate vinyl polymers encompassing both radically and cationically polymerizable monomers, posing a formidable challenge due to the distinct thiocarbonylthio end-groups required for efficient control over radical and cationic SUMIs. Herein, we present a breakthrough in the form of interconvertible radical and cationic SUMIs achieved through the manipulation of thiocarbonylthio end-groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!