AI Article Synopsis

  • A total-consumption sample introduction system was developed for single-particle ICP-MS to accurately measure particle number concentration (PNC) and size of nanoparticles (NPs) without needing to correct for transport efficiency (TE).
  • The system achieved a high particle TE of 93% for platinum nanoparticles, ensuring consistency in measurements and eliminating the need for TE correction in PNC calculations.
  • The calibration methods used allowed for reliable size determination of nanoparticles, with results that closely matched those obtained through transmission electron microscopy, reaffirming the effectiveness of the new sample introduction system.

Article Abstract

In order to facilitate reliable and efficient determination of both the particle number concentration (PNC) and the size of nanoparticles (NPs) by single-particle ICP-MS (spICP-MS) without the need to correct for the particle transport efficiency (TE, a possible source of bias in the results), a total-consumption sample introduction system consisting of a large-bore, high-performance concentric nebulizer and a small-volume on-axis cylinder chamber was utilized. Such a system potentially permits a particle TE of 100 %, meaning that there is no need to include a particle TE correction when calculating the PNC and the NP size. When the particle TE through the sample introduction system was evaluated by comparing the frequency of sharp transient signals from the NPs in a measured NP standard of precisely known PNC to the particle frequency for a measured NP suspension, the TE for platinum NPs with a nominal diameter of 70 nm was found to be very high (i.e., 93 %), and showed satisfactory repeatability (relative standard deviation of 1.0 % for four consecutive measurements). These results indicated that employing this total consumption system allows the particle TE correction to be ignored when calculating the PNC. When the particle size was determined using a solution-standard-based calibration approach without an NP standard, the particle diameters of platinum and silver NPs with nominal diameters of 30-100 nm were found to agree well with the particle diameters determined by transmission electron microscopy, regardless of whether a correction was performed for the particle TE. Thus, applying the proposed system enables NP size to be accurately evaluated using a solution-standard-based calibration approach without the need to correct for the particle TE.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-016-0089-5DOI Listing

Publication Analysis

Top Keywords

particle
13
sample introduction
12
introduction system
12
transport efficiency
8
total-consumption sample
8
particle size
8
single-particle icp-ms
8
pnc size
8
correct particle
8
particle correction
8

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Functionalization of polymer nanoparticles (NPs) with targeting peptides is of interest for drug delivery applications to enhance tumor accumulation and penetration. Herein, we evaluated the feasibility of two different methods for the attachment of a tumor-penetrating peptide LinTT1 (AKRGARSTA) to poly(ethylene glycol)-block-poly(ε-caprolactone) (PCL-PEG) NPs: (1) "post-conjugation" onto pre-formed nanoparticles, and (2) "pre-conjugation", the synthesis and purification of peptide-polymer conjugates and subsequent nanoprecipitation of the conjugates diluted with non-functionalized polymers. Conjugation of the labelled peptide via maleimide-thiol chemistry was verified by gel permeation chromatography (GPC) and fluorescence measurements.

View Article and Find Full Text PDF

A nano-enzyme sandwich assay (SWzyme assay), a colorimetric system based on a biochip and inorganic nano-enzyme for rapid and simple determination of exosomal Aβ42 in plasma is proposed. Anti-CD63 antibody-modified biochips were prepared for plasma exosome capture and synthesized highly catalytic Ni@Pt nanozymes for detecting exosomal Aβ42. The method was able to detect exosomal Aβ42 with a limit of detection (LOD) as low as 4.

View Article and Find Full Text PDF

Pigment particles used in tattooing may exert long terms effect by releasing diffusible degradation products. In the present work, aqueous suspensions of the organic orange diazo pigment PO13 were aged by exposure to simulated sunlight at 40 °C. The morphology and the surface charge of PO13 particles were barely modified upon aging, but primary particles were released by de-agglomeration.

View Article and Find Full Text PDF

Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!