Novel Small Molecule JP-153 Targets the Src-FAK-Paxillin Signaling Complex to Inhibit VEGF-Induced Retinal Angiogenesis.

Mol Pharmacol

Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)

Published: January 2017

AI Article Synopsis

Article Abstract

Targeting vascular endothelial growth factor (VEGF) is a common treatment strategy for neovascular eye disease, a major cause of vision loss in diabetic retinopathy and age-related macular degeneration. However, the decline in clinical efficacy over time in many patients suggests that monotherapy of anti-VEGF protein therapeutics may benefit from adjunctive treatments. Our previous work has shown that through decreased activation of the cytoskeletal protein paxillin, growth factor-induced ischemic retinopathy in the murine oxygen-induced retinopathy model could be inhibited. In this study, we demonstrated that VEGF-dependent activation of the Src/FAK/paxillin signalsome is required for human retinal endothelial cell migration and proliferation. Specifically, the disruption of focal adhesion kinase (FAK) and paxillin interactions using the small molecule JP-153 inhibited Src-dependent phosphorylation of paxillin (Y118) and downstream activation of Akt (S473), resulting in reduced migration and proliferation of retinal endothelial cells stimulated with VEGF. However, this effect did not prevent the initial activation of either Src or FAK. Furthermore, topical application of a JP-153-loaded microemulsion affected the hallmark features of pathologic retinal angiogenesis, reducing neovascular tuft formation and increased avascular area, in a dose-dependent manner. In conclusion, our results suggest that using small molecules to modulate the focal adhesion protein paxillin is an effective strategy for treating pathologic retinal neovascularization. To our knowledge, this is the first paradigm validating modulation of paxillin to inhibit angiogenesis. As such, we have identified and developed a novel class of small molecules aimed at targeting focal adhesion protein interactions that are essential for pathologic neovascularization in the eye.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.116.105031DOI Listing

Publication Analysis

Top Keywords

focal adhesion
12
small molecule
8
molecule jp-153
8
retinal angiogenesis
8
protein paxillin
8
retinal endothelial
8
migration proliferation
8
pathologic retinal
8
small molecules
8
adhesion protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!