The development of vaccines to protect against parasites is difficult, in large part due to complex host-parasite interactions that have evolved over millennia. Parasitic factors such as antigenic variation and host factors such as age, transmission intensity, and genetic influences are all thought to contribute to the limited efficacy of parasite vaccines. A developing theme in field studies investigating antiparasitic immunity is the emergence, establishment, and maintenance of immunoregulatory networks that shape the immune responses to new infections, as well as vaccines, thereby influencing disease outcome. In this review, we will examine why parasite vaccine candidates perform poorly in target populations and, in particular, the role of immunoregulatory networks in influencing antimalarial immunity and vaccine efficacy. We will focus our discussion on malaria, the most important parasitic disease of humans, but also highlight the broader impact of immunoregulatory networks on vaccine efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1600619DOI Listing

Publication Analysis

Top Keywords

immunoregulatory networks
16
vaccine efficacy
12
networks vaccine
8
impact established
4
immunoregulatory
4
established immunoregulatory
4
networks
4
vaccine
4
efficacy
4
efficacy development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!