Multidocument summarization has gained popularity in many real world applications because vital information can be extracted within a short time. Extractive summarization aims to generate a summary of a document or a set of documents by ranking sentences and the ranking results rely heavily on the quality of sentence features. However, almost all previous algorithms require hand-crafted features for sentence representation. In this paper, we leverage on word embedding to represent sentences so as to avoid the intensive labor in feature engineering. An enhanced convolutional neural networks (CNNs) termed multiview CNNs is successfully developed to obtain the features of sentences and rank sentences jointly. Multiview learning is incorporated into the model to greatly enhance the learning capability of original CNN. We evaluate the generic summarization performance of our proposed method on five Document Understanding Conference datasets. The proposed system outperforms the state-of-the-art approaches and the improvement is statistically significant shown by paired t -test.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2016.2628402DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural networks
8
extractive summarization
8
multiview convolutional
4
networks multidocument
4
multidocument extractive
4
summarization
4
summarization multidocument
4
multidocument summarization
4
summarization gained
4

Similar Publications

Current neural network models of primate vision focus on replicating overall levels of behavioral accuracy, often neglecting perceptual decisions' rich, dynamic nature. Here, we introduce a novel computational framework to model the dynamics of human behavioral choices by learning to align the temporal dynamics of a recurrent neural network (RNN) to human reaction times (RTs). We describe an approximation that allows us to constrain the number of time steps an RNN takes to solve a task with human RTs.

View Article and Find Full Text PDF

Giant cell arteritis (GCA), a systemic vasculitis affecting large and medium-sized arteries, poses significant diagnostic and management challenges, particularly in preventing irreversible complications like vision loss. Recent advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL), offer promising solutions to enhance diagnostic accuracy and optimize treatment strategies for GCA. This systematic review, conducted according to the PRISMA 2020 guidelines, synthesizes existing literature on AI applications in GCA care, with a focus on diagnostic accuracy, treatment outcomes, and predictive modeling.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) is characterized by muscle stiffness, bradykinesia, and balance disorders, significantly impairing the quality of life for affected patients. While motion pose estimation and gait analysis can aid in early diagnosis and timely intervention, clinical practice currently lacks objective and accurate tools for gait analysis.

Methods: This study proposes a multi-level 3D pose estimation framework for PD patients, integrating monocular video with Transformer and Graph Convolutional Network (GCN) techniques.

View Article and Find Full Text PDF

Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the convenient and non-invasive nature of data acquisition. Our group has successfully developed a novel approach that uses convolutional neural network with transfer learning to analyze spectrogram images of the sustained vowel /a/ to identify people with Parkinson's disease.

View Article and Find Full Text PDF

Despite the sequencing revolution, large swaths of the genomes sequenced to date lack any information about the arrangement of transcription factor binding sites on regulatory DNA. Massively Parallel Reporter Assays (MPRAs) have the potential to dramatically accelerate our genomic annotations by making it possible to measure the gene expression levels driven by thousands of mutational variants of a regulatory region. However, the interpretation of such data often assumes that each base pair in a regulatory sequence contributes independently to gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!