Foreign body giant cell (FBGC) formation is associated with the inflammatory response following material implantation. However, the intracellular signaling events that regulate the process remain unclear. Here, we investigated the potential role of phospholipase C (PLC)γ1, a crucial enzyme required for growth factor-induced signaling, on FBGC formation. Knock-down of PLCγ1 using shRNA induced FBGC formation accompanied by increased expression of cathepsin K, DC-STAMP and CD36. Re-addition of PLCγ1 decreased FBGC formation. PLCγ1-deficiency caused a decrease in RUNX1 and subsequent PU.1 upregulation while subsequent rescue of RUNX1 in sh-PLCγ1-transfected cells strongly inhibited FBGC formation. FBGC generated by knock-down of PLCγ1 using shRNA resulted in strongly increased TNF-α production, with augmented activation of ERK, p38 MAPK and JNK, and subsequently NF-κB. Taken together, we suggest that PLCγ1 plays a role in the foreign body response by regulating the RUNX1/PU.1/DC-STAMP axis in macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2016.11.152 | DOI Listing |
Biomaterials
March 2025
University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA. Electronic address:
Acta Biomater
October 2024
Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China. Electronic address:
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli.
View Article and Find Full Text PDFFront Immunol
July 2024
School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
During the foreign body response (FBR), macrophages fuse to form foreign body giant cells (FBGCs). Modulation of FBGC formation can prevent biomaterial degradation and loss of therapeutic efficacy. However, the microenvironmental cues that dictate FBGC formation are poorly understood with conflicting reports.
View Article and Find Full Text PDFJ Immunol
February 2024
Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT.
Implanted medical devices, from artificial heart valves and arthroscopic joints to implantable sensors, often induce a foreign body response (FBR), a form of chronic inflammation resulting from the inflammatory reaction to a persistent foreign stimulus. The FBR is characterized by a subset of multinucleated giant cells (MGCs) formed by macrophage fusion, the foreign body giant cells (FBGCs), accompanied by inflammatory cytokines, matrix deposition, and eventually deleterious fibrotic implant encapsulation. Despite efforts to improve biocompatibility, implant-induced FBR persists, compromising the utility of devices and making efforts to control the FBR imperative for long-term function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!