Genetic Ablation of AXL Does Not Protect Human Neural Progenitor Cells and Cerebral Organoids from Zika Virus Infection.

Cell Stem Cell

Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA. Electronic address:

Published: December 2016

Zika virus (ZIKV) can cross the placental barrier, resulting in infection of the fetal brain and neurological defects including microcephaly. The cellular tropism of ZIKV and the identity of attachment factors used by the virus to gain access to key cell types involved in pathogenesis are under intense investigation. Initial studies suggested that ZIKV preferentially targets neural progenitor cells (NPCs), providing an explanation for the developmental phenotypes observed in some pregnancies. The AXL protein has been nominated as a key attachment factor for ZIKV in several cell types including NPCs. However, here we show that genetic ablation of AXL has no effect on ZIKV entry or ZIKV-mediated cell death in human induced pluripotent stem cell (iPSC)-derived NPCs or cerebral organoids. These findings call into question the utility of AXL inhibitors for preventing birth defects after infection and suggest that further studies of viral attachment factors in NPCs are needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2016.11.011DOI Listing

Publication Analysis

Top Keywords

genetic ablation
8
ablation axl
8
neural progenitor
8
progenitor cells
8
cerebral organoids
8
zika virus
8
attachment factors
8
cell types
8
zikv
5
axl
4

Similar Publications

Objective: Loss of function of the phospholipid scramblase (PLS) TMEM16F results in Scott Syndrome, a hereditary bleeding disorder generally attributed to intrinsic platelet dysfunction. The role of TMEM16F in endothelial cells, however, is not well understood. We sought to test the hypothesis that endothelial TMEM16F contributes to hemostasis by measuring bleeding time and venous clotting in endothelial-specific knockout (ECKO) mice.

View Article and Find Full Text PDF

RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of followed by mutations in epigenetic regulators , , and . Mutations in , a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming.

View Article and Find Full Text PDF

Tissue fibrosis is a progressive pathological process with excessive deposition of extracellular matrix proteins (ECM). Myofibroblasts, identified by alpha-smooth muscle actin (αSMA) expression, play an important role in tissue fibrosis by producing ECM. Here, we found that the Wnt antagonist Dickkopf1 (DKK1) induced gene expressions associated with inflammation and fibrosis in lung fibroblasts.

View Article and Find Full Text PDF

ERMP1 as a newly identified ER stress gatekeeper in chronic kidney disease.

Am J Physiol Renal Physiol

January 2025

Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

ERMP1 is involved in the Unfolded Protein Response (UPR) pathway in response to endoplasmic reticulum (ER) stress. Given the pivotal role of ER stress in the pathogenesis of acute and chronic kidney diseases, we hypothesized that ERMP1 could be instrumental in the development of renal injury. analysis of RNA sequencing datasets from renal biopsies were exploited to assess the expression of ERMP1 in the kidney under normal or pathological conditions.

View Article and Find Full Text PDF

Dental manifestations of hypophosphatasia: translational and clinical advances.

JBMR Plus

February 2025

Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States.

Hypophosphatasia (HPP) is an inherited error in metabolism resulting from loss-of-function variants in the gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP plays a crucial role in biomineralization of bones and teeth, in part by reducing levels of inorganic pyrophosphate (PP), an inhibitor of biomineralization. HPP onset in childhood contributes to rickets, including growth plate defects and impaired growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!