Plant-soil feedback, the reciprocal relationship between a plant and its associated microbial communities, has been proposed to be an important driver of plant populations and community dynamics. While rarely considered, understanding how plant-soil feedback contributes to plant rarity may have implications for conservation and management of rare species. Wollemi pine (Wollemia nobilis) is a critically endangered species, of which fewer than 100 trees are known to exist in the wild. Seedling survival within the first year after germination and subsequent recruitment of Wollemi pine is limited in the wild. We used a plant-soil feedback approach to investigate the functional effect of species-specific differences previously observed in the microbial communities underneath adult Wollemi pine and a neighboring species, coachwood (Ceratopetalum apetalum), and also whether additional variation in microbial communities in the wild could impact seedling growth. There was no evidence for seedling growth being affected by tree species associated with soil inocula, suggesting that plant-soil feedbacks are not limiting recruitment in the natural population. However, there was evidence of fungal, but not bacterial, community variation impacting seedling growth independently of plant-soil feedbacks. Chemical (pH) and physical (porosity) soil characteristics were identified as potential drivers of the functional outcomes of these fungal communities. The empirical approach described here may provide opportunities to identify the importance of soil microbes to conservation efforts targeting other rare plant species and is also relevant to understanding the importance of soil microbes and plant-soil feedbacks for plant community dynamics more broadly.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.1594DOI Listing

Publication Analysis

Top Keywords

microbial communities
16
seedling growth
16
plant-soil feedback
16
wollemi pine
12
plant-soil feedbacks
12
community dynamics
8
soil microbes
8
plant-soil
7
soil
5
communities
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!