The multiple assemblies of VDAC: from conformational heterogeneity to β-aggregation and amyloid formation.

Biochem Soc Trans

School of Applied Sciences, Department of Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.

Published: October 2016

From their cellular localisation, to their atomic structure and their involvement in mitochondrial-driven cell death, voltage-dependent anion channels (VDACs) have challenged the scientific community with enigmas and paradoxes for over four decades. VDACs form active monomer channels in lipid bilayers, but they can also organise in multimeric assemblies. What induces, regulates and/or controls the monomer-multimer dynamics at the cellular level is not known. However, these state transitions appear to be relevant for mitochondria in making life or death decisions and for driving developmental processes. This review starts with a general introduction on VDACs and continues by examining VDAC oligomerisation/aggregation in light of recent discussions on VDAC-β-amyloid interactions and their involvement in Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST20160114DOI Listing

Publication Analysis

Top Keywords

multiple assemblies
4
assemblies vdac
4
vdac conformational
4
conformational heterogeneity
4
heterogeneity β-aggregation
4
β-aggregation amyloid
4
amyloid formation
4
formation cellular
4
cellular localisation
4
localisation atomic
4

Similar Publications

The re-emergence of episodic faecal contamination of Parlee and Murray Corner beaches, on the Northumberland Strait of New Brunswick, Canada, in 2017, raised renewed community concerns on the health, environmental and tourism sustainability of these community resources, and led to creation of an Integrated Watershed Management Plan for the Shediac Bay Watershed (October 2021). In response we have to date compiled, curated and made accessible 205,772 microbial water quality data records spanning over 80 years from Southeastern New Brunswick and the Northumberland Strait. This dataset derives in large part from Shellfish Surveys completed by Environment and Climate Change Canada, along with data generated by multiple government agencies, Non-Governmental Organizations and citizen science sources.

View Article and Find Full Text PDF

Passion fruit (Passiflora edulis) is a commercially important crop known for its nutritional value, high antioxidant content, and use in beverages and desserts. Gulupa baciliform virus A (GBVA), tentatively named Badnavirus in the family Caulimoviridae, is a cryptic circular double-stranded DNA (dsDNA, ≈6,951 bps) virus recently reported in Colombia with asymptomatic infection of passion fruit (Sepúlveda et al. 2022).

View Article and Find Full Text PDF

Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood.

View Article and Find Full Text PDF

ISB 1442 is a bispecific biparatopic antibody in clinical development to treat hematological malignancies. It consists of two adjacent anti-CD38 arms targeting non-overlapping epitopes that preferentially drive binding to tumor cells and a low-affinity anti-CD47 arm to enable avidity-induced blocking of proximal CD47 receptors. We previously reported the pharmacology of ISB 1442, designed to reestablish synthetic immunity in CD38+ hematological malignancies.

View Article and Find Full Text PDF

Nanoparticles of highly porous metal-organic frameworks (MOFs) are some of the most exciting nanomaterials under development, with potential applications that range from biomedicine and catalysis to adsorption technologies. However, our synthetic methodologies to functionalize and manipulate MOF nanoparticles (NPs) are less well developed than they might be. Here we create MOF NPs derivatized with hydrazone units on their exterior, enabling chemospecific reversible dynamic covalent modification of structures on the external surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!