Dichotomous roles of TGF-β in human cancer.

Biochem Soc Trans

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.

Published: October 2016

Transforming growth factor-β (TGF-β) mediates numerous biological processes, including embryonic development and the maintenance of cellular homeostasis in a context-dependent manner. Consistent with its central role in maintaining cellular homeostasis, inhibition of TGF-β signaling results in disruption of normal homeostatic processes and subsequent carcinogenesis, defining the TGF-β signaling pathway as a tumor suppressor. However, once carcinogenesis is initiated, the TGF-β signaling pathway promotes cancer progression. This dichotomous function of the TGF-β signaling pathway is mediated through altering effects on both the cancer cells, by inducing apoptosis and inhibiting proliferation, and the tumor microenvironment, by promoting angiogenesis and inhibiting immunosurveillance. Current studies support inhibition of TGF-β signaling either alone, or in conjunction with anti-angiogenic therapy or immunotherapy as a promising strategy for the treatment of human cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682628PMC
http://dx.doi.org/10.1042/BST20160065DOI Listing

Publication Analysis

Top Keywords

tgf-β signaling
20
signaling pathway
12
cellular homeostasis
8
inhibition tgf-β
8
tgf-β
7
signaling
5
dichotomous roles
4
roles tgf-β
4
tgf-β human
4
human cancer
4

Similar Publications

Background: Cryoablation induces antitumor immune responses. Spatial transcriptomic landscape technology has been used to determine the micron-level panoramic transcriptomics of tissue slices in situ.

Methods: The effects of cryoablation on the immune microenvironment in non-small cell lung cancer (NSCLC) were explored by comparing the Whole Transcriptome Atlas (WTA) panel of immune cells before and after cryoablation using the spatial transcriptomic landscape.

View Article and Find Full Text PDF

Background: Patients with transplant-ineligible relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL) have limited treatment options and poor outcomes.

Methods: This phase III study (NCT04236141) evaluated the efficacy and safety of polatuzumab vedotin plus bendamustine and rituximab (Pola+BR) versus BR in Chinese patients with transplant-ineligible R/R DLBCL to support regulatory submission in China. Patients were randomized 2:1 to receive Pola+BR or placebo+BR.

View Article and Find Full Text PDF

Molecular beacon (MB) probes have been extensively used for nucleic acid analysis. However, MB probes fail to hybridize with folded DNA or RNA. Here, we demonstrate that MB probes equipped with extra sequences complementary to the analyte, named 'tail', can increase the signal-to-background ratio by ∼40-fold and hybridization rates by ∼800-fold compared to conventional MB probes.

View Article and Find Full Text PDF

IP6K1 rewires LKB1 signaling to mediate hyperglycemic endothelial senescence.

Diabetes

January 2025

Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.

Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1.

View Article and Find Full Text PDF

Harmonized technical standard test methods for quality evaluation of medical fluorescence endoscopic imaging systems.

Vis Comput Ind Biomed Art

January 2025

School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.

Fluorescence endoscopy technology utilizes a light source of a specific wavelength to excite the fluorescence signals of biological tissues. This capability is extremely valuable for the early detection and precise diagnosis of pathological changes. Identifying a suitable experimental approach and metric for objectively and quantitatively assessing the imaging quality of fluorescence endoscopy is imperative to enhance the image evaluation criteria of fluorescence imaging technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!