AI Article Synopsis

Article Abstract

A facile, controllable, inexpensive and green electrochemical synthesis of IrO2-graphene nanohybrid thin films is developed to fabricate an easy-to-use integrated paper microfluidic electrochemical pH sensor for resource-limited settings. Taking advantages from both pH meters and strips, the pH sensing platform is composed of hydrophobic barrier-patterned paper micropad (µPAD) using polydimethylsiloxane (PDMS), screen-printed electrode (SPE) modified with IrO2-graphene films and molded acrylonitrile butadiene styrene (ABS) plastic holder. Repetitive cathodic potential cycling was employed for graphene oxide (GO) reduction which can completely remove electrochemically unstable oxygenated groups and generate a 2D defect-free homogeneous graphene thin film with excellent stability and electronic properties. A uniform and smooth IrO2 film in nanoscale grain size is anodically electrodeposited onto the graphene film, without any observable cracks. The resulting IrO2-RGO electrode showed slightly super-Nernstian responses from pH 2-12 in Britton-Robinson (B-R) buffers with good linearity, small hysteresis, low response time and reproducibility in different buffers, as well as low sensitivities to different interfering ionic species and dissolved oxygen. A simple portable digital pH meter is fabricated, whose signal is measured with a multimeter, using high input-impedance operational amplifier and consumer batteries. The pH values measured with the portable electrochemical paper-microfluidic pH sensors were consistent with those measured using a commercial laboratory pH meter with a glass electrode.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226269PMC
http://dx.doi.org/10.3791/53339DOI Listing

Publication Analysis

Top Keywords

graphene oxide
8
nanohybrid thin
8
thin film
8
paper microfluidic
8
iridium oxide-reduced
4
graphene
4
oxide-reduced graphene
4
oxide nanohybrid
4
film
4
film modified
4

Similar Publications

Activated Graphite with Richly Oxygenated Surface from Spent Lithium-Ion Batteries for Microwave Absorption.

Small

January 2025

School of Materials and Physics & Center of Mineral Resource Waste Recycling, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.

Designing spent graphite anodes from lithium-ion batteries (LIBs) for applications beyond regenerated batteries offers significant potential for promoting the recycling of spent LIBs. The battery-grade graphite, characterized by a highly graphitized structure, demonstrates excellent conductive loss capabilities, making it suitable for microwave absorption. During the Li-ion intercalation and deintercalation processes in battery operation, the surface layer of spent graphite (SG) becomes activated, forming oxygen-rich functional groups that enhance the polarization loss mechanism.

View Article and Find Full Text PDF

The majority of industries throughout the world rely largely on fossil fuels as their primary energy source. However, these resources are finite and become scarcer by the day. Therefore, exploring alternative fuels and additives for diesel fuel is imperative to mitigate fuel consumption.

View Article and Find Full Text PDF

The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.

View Article and Find Full Text PDF

Purpose: This study investigated the synergistic effects of reduced graphene oxide (RGO) on the antibacterial activity of three calcium hydroxide-based intracanal medicaments with different vehicles.

Methods: Multispecies biofilms were cultured in a bovine root canal model. Intracanal medicaments containing nonaqueous vehicles, including N-methyl-2-pyrrolidone (NMP; CleaniCal), propylene glycol (PG; UltraCal XS), and polyethylene glycol (PEG; Calcipex II), were placed in the model.

View Article and Find Full Text PDF

Highly compressible lamellar graphene/cellulose/sodium alginate aerogel via bidirectional freeze-drying for flexible pressure sensor.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!