The fusion (F) protein of measles virus performs refolding from the thermodynamically metastable prefusion form to the highly stable postfusion form via an activated unstable intermediate stage, to induce membrane fusion. Some amino acids involved in the fusion regulation cluster in the heptad repeat B (HR-B) domain of the stalk region, among which substitution of residue 465 by various amino acids revealed that fusion activity correlates well with its side chain length from the Cα (P<0.01) and van der Waals volume (P<0.001), except for Phe, Tyr, Trp, Pro and His carrying ring structures. Directed towards the head region, longer side chains of the non-ring-type 465 residues penetrate more deeply into the head region and may disturb the hydrophobic interaction between the stalk and head regions and cause destabilization of the molecule by lowering the energy barrier for refolding, which conferred the F protein enhanced fusion activity. Contrarily, the side chain of ring-type 465 residues turned away from the head region, resulting in not only no contact with the head region but also extensive coverage of the HR-B surface, which may prevent the dissociation of the HR-B bundle for initiation of membrane fusion and suppress fusion activity. Located in the HR-B domain just at the junction between the head and stalk regions, amino acid 465 is endowed with a possible ability to either destabilize or stabilize the F protein depending on its molecular volume and the direction of the side chain, regulating fusion activity of measles virus F protein.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.000670DOI Listing

Publication Analysis

Top Keywords

measles virus
8
fusion protein
8
membrane fusion
8
amino acids
8
fusion
6
residue located
4
located junction
4
junction head
4
head stalk
4
stalk regions
4

Similar Publications

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Measles, a highly contagious respiratory illness caused by the measles virus (MeV), poses significant global and national public health challenges despite advancements in vaccination efforts. Though measles was declared eliminated in the United States in 2000, recent years have seen a resurgence of cases, particularly in under-vaccinated communities. This resurgence is compounded by factors such as vaccine hesitancy, the impact of the COVID-19 pandemic on immunization rates, and international travel introducing new cases from endemic regions.

View Article and Find Full Text PDF

Background: Acute febrile illness is a common reason for seeking healthcare in low- and middle-income countries. We describe the diagnostic utility of a TaqMan Array Card (TAC) real-time polymerase chain reaction (PCR) panel for pathogen detection in paediatric and adult inpatients admitted with febrile illness.

Methods: In this prospective cohort study, we screened medical admissions for a tympanic temperature ≥38.

View Article and Find Full Text PDF

Oncolytic measles virus-induced cell killing in radio-resistant and drug-resistant nasopharyngeal carcinoma.

Malays J Pathol

December 2024

Universiti Tunku Abdul Rahman, M. Kandiah Faculty of Medicine and Health Sciences, Department of Pre-clinical Sciences, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.

Introduction: The current first-line therapy for nasopharyngeal carcinoma (NPC) is often associated with long-term complications. Oncolytic measles virus (MV) therapy offers a promising alternative to cancer therapy. This study aims to investigate the efficacy of MV in killing NPC cells in vitro, both with or without resistance to radiation and drug therapy.

View Article and Find Full Text PDF

Background: The presence of intrathecal total IgG production is a hallmark of cerebrospinal fluid (CSF) characteristics in multiple sclerosis (MS). Herein, we systematically analyze how the intensity (instead of mere presence) of intrathecal total IgG production relates to basic CSF parameters in MS.

Methods: We retrospectively assessed clinical routine CSF findings from 390 therapy-naïve relapsing-remitting MS patients diagnosed according to 2017 revised McDonald criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!