We aimed to investigate whether acellular endocardium can be used as a useful biomaterial for the intima of engineered small-caliber vascular grafts. Fresh endocardium was harvested from the swine left atrium and was decellularized by digestion with the decellularization solution of Triton X-100 and SDS containing DNase I and RNase A. Surface morphological characteristics and Young's modulus were evaluated. To analyze the effect of mechanical characteristics on cell adhesion, the decellularized endocardium was stiffened with 2.5% glutaraldehyde. Small-caliber vascular grafts were constructed using decellularized endocardium treated with or without glutaraldehyde as the intima. CD34+ cells were seeded onto the luminal surface of the vascular grafts and linked to bioreactors that simulate a pulsatile blood stream. Acellular endocardium had distinct surface morphological characteristics, which were quite different from those of other materials. The compliance of acellular endocardium was higher than that of other materials tested by Young's modulus. CD34+ cells formed a monolayer structure and adhered to the inner face of the acellular endocardium. The glutaraldehyde treatment stiffened the acellular endocardium but had little impact on the surface morphological characteristics or static adhesiveness of the cells. Data from the bioreactor study showed that the detachment of the cells from the surface of glutaraldehyde-treated acellular endocardium increased dramatically when the pressure was equal or higher than 40 mm Hg, while the cells on the untreated acellular endocardium remained well and formed confluent monolayers and tight junctions under the same pressure. Acellular endocardium has distinct structures and mechanical characteristics that are beneficial for CD34+ cell adhesion and retention under dynamic fluid perfusion. Thus, it can be used as a useful biomaterial for the construction of the intima of engineered small-caliber vascular grafts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/aor.12814 | DOI Listing |
Acta Biomater
March 2022
RegenMedix Consulting LLC, Houston, TX, USA. Electronic address:
The heart is a highly complex, multicellular solid organ with energy-demanding processes that require a dense vascular network, extensive cell-cell interactions, and extracellular matrix (ECM)-mediated crosstalk among heterogeneous cell populations. Here, we describe the regeneration of left ventricular (LV) wall using decellularized whole rabbit heart scaffolds recellularized exclusively with human induced pluripotent stem cell-derived endothelial cells, cardiomyocytes, and other cardiac cell types. Cells were sequentially delivered to the scaffold using an optimized endothelial cell:cardiomyocyte media.
View Article and Find Full Text PDFBiomed Opt Express
November 2019
Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. Mail/Code:CH13B, Portland, OR 97239, USA.
The endocardial to mesenchymal transition (EndMT) that occurs in endocardial cushions during heart development is critical for proper heart septation and formation of the heart's valves. In EndMT, cells delaminate from the endocardium and migrate into the previously acellular endocardial cushions. Optical coherence tomography (OCT) imaging uses the optical properties of tissues for contrast, and during early development OCT can differentiate cellular versus acellular tissues.
View Article and Find Full Text PDFArtif Organs
December 2016
Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.
We aimed to investigate whether acellular endocardium can be used as a useful biomaterial for the intima of engineered small-caliber vascular grafts. Fresh endocardium was harvested from the swine left atrium and was decellularized by digestion with the decellularization solution of Triton X-100 and SDS containing DNase I and RNase A. Surface morphological characteristics and Young's modulus were evaluated.
View Article and Find Full Text PDFAm J Transl Res
June 2015
ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol Badalona, Barcelona, Spain ; Department of Medicine, Autonomous University of Barcelona (UAB) Barcelona, Spain.
Introduction: Selection of a biomaterial-based scaffold that mimics native myocardial extracellular matrix (ECM) architecture can facilitate functional cell attachment and differentiation. Although decellularized myocardial ECM accomplishes these premises, decellularization processes may variably distort or degrade ECM structure.
Materials And Methods: Two decellularization protocols (DP) were tested on porcine heart samples (epicardium, mid myocardium and endocardium).
Biomaterials
August 2015
Department of Cardiology, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), Madrid, Spain; Bioartifical Organs Laboratory, Department of Cardiology, Instituto de Investigación Sanitaria Hospital Gregorio Marañon (IiSGM), Madrid, Spain. Electronic address:
The best definitive treatment option for end-stage heart failure currently is transplantation, which is limited by donor availability and immunorejection. Generating an autologous bioartificial heart could overcome these limitations. Here, we have decellularized a human heart, preserving its 3-dimensional architecture and vascularity, and recellularized the decellularized extracellular matrix (dECM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!