During skin pigmentation in amniotes, melanin synthesized in the melanocyte is transferred to keratinocytes by a particle called the melanosome. Previous studies, mostly using dissociated cultured cells, have proposed several different models that explain how the melanosome transfer is achieved. Here, using a technique that labels the plasma membrane of melanocytes within a three-dimensional system that mimics natural tissues, we have visualized the plasma membrane of melanocytes with EGFP in chicken embryonic skin. Confocal time-lapse microscopy reveals that the melanosome transfer is mediated, at least in part, by vesicles produced by plasma membrane. Unexpectedly, the vesicle release is accompanied by the membrane blebbing of melanocytes. Blebs that have encapsulated a melanosome are pinched off to become vesicles, and these melanosome-containing vesicles are finally engulfed by neighboring keratinocytes. For both the membrane blebbing and vesicle release, Rho small GTPase is essential. We further show that the membrane vesicle-mediated melanosome transfer plays a significant role in the skin pigmentation. Given that the skin pigmentation in inter-feather spaces in chickens is similar to that in inter-hair spaces of humans, our findings should have important consequences in cosmetic medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133614 | PMC |
http://dx.doi.org/10.1038/srep38277 | DOI Listing |
Biomol Biomed
December 2024
Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China.
Chronic liver disease (CLD) is a significant global health concern that leads to increased morbidity and mortality, and is associated with skin pigmentation changes. Excessive facial pigmentation is a common characteristic of patients with CLD, although the exact mechanism underlying this phenomenon remains unclear. Melanin, which consists of eumelanin and pheomelanin, is synthesized in melanocytes.
View Article and Find Full Text PDFJ Biosci Bioeng
December 2024
Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan. Electronic address:
Hair color is formed through a series of processes such as melanin synthesis and storage in melanosomes, transfer from melanocytes, and reception by hair matrix cells in the hair bulb. Because gray hair is caused by the deterioration of a single or multiple of these processes, understanding the mechanisms responsible for these processes is crucial for developing therapeutic strategies. Recently, a robust approach for preparing hair follicle organoids (HFOs) was reported, in which hair follicle morphogenesis, including hair shaft elongation, was tracked in vitro.
View Article and Find Full Text PDFBiomed Pharmacother
November 2024
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China. Electronic address:
J Invest Dermatol
September 2024
iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal. Electronic address:
In the skin, melanin is synthesized by melanocytes within melanosomes and transferred to keratinocytes. After being phagocytosed by keratinocytes, melanin polarizes to supranuclear caps that protect against the genotoxic effects of UVR. We provide evidence that melanin-containing phagosomes undergo a canonical maturation process, with the sequential acquisition of early and late endosomal markers.
View Article and Find Full Text PDFFront Mol Biosci
August 2024
Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!