We describe an example of a piecewise gas chamber that can be customized to incorporate a low flux of gas-phase radicals with an existing surface analysis chamber for in situ and stepwise gas-surface interaction experiments without any constraint in orientation. The piecewise nature of this gas chamber provides complete angular freedom and easy alignment and does not require any modification of the existing surface analysis chamber. In addition, the entire gas-surface system is readily differentially pumped with the surface chamber kept under ultra-high-vacuum during the gas-surface measurements. This new design also allows not only straightforward reconstruction to accommodate the orientation of different surface chambers but also for the addition of other desired features, such as an additional pump to the current configuration. Stepwise interaction between atomic oxygen and a highly ordered pyrolytic graphite surface was chosen to test the effectiveness of this design, and the site-dependent O-atom chemisorption and clustering on the graphite surface were resolved by a scanning tunneling microscope in the nm-scale. X-ray photoelectron spectroscopy was used to further confirm the identity of the chemisorbed species on the graphite surface as oxygen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4966116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!