X-ray and neutrons are commonly used to image inertial confinement fusion implosions, providing key diagnostic information on the fuel assembly of burning deuterium-tritium (DT) fuel. The x-ray and neutron data provided are complementary as the production of neutrons and x-rays occurs from different physical processes, but typically these two images are collected from different views with no opportunity for co-registration of the two images. Neutrons are produced where the DT fusion fuel is burning; X-rays are produced in regions corresponding to high temperatures. Processes such as mix of ablator material into the hotspot can result in increased x-ray production and decreased neutron production but can only be confidently observed if the two images are collected along the same line of sight and co-registered. To allow direct comparison of x-ray and neutron data, a combined neutron x-ray imaging system has been tested at Omega and installed at the National Ignition Facility to collect an x-ray image along the currently installed neutron imaging line of sight. This system is described, and initial results are presented along with prospects for definitive coregistration of the images.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4962194DOI Listing

Publication Analysis

Top Keywords

combined neutron
8
neutron x-ray
8
x-ray imaging
8
national ignition
8
ignition facility
8
x-ray neutron
8
neutron data
8
images collected
8
x-ray
7
neutron
5

Similar Publications

Deep eutectic solvent-enabled lignocellulosic biomass valorization: Toward understanding of biomass pretreatment, lignin dissolution, and lignin's antioxidant activity.

Int J Biol Macromol

January 2025

State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China. Electronic address:

A comprehensive study was conducted to determine the effects of water and ethylene glycol (EG) on biomass pretreatment using a binary deep eutectic solvent (DES) containing choline chloride and acetic acid (1ChCl3AC) at a mole ratio of 1:3. Different quantities of water and EG were combined with 1ChCl3AC to pretreat wheat straw, miscanthus, eucalyptus, and sorghum stalk at 130 °C for 6 h. The changes in nanopore structure and surface roughness of wet biomass, as well as biomass crystallinity after 1ChCl3AC-based pretreatment were investigated using XRD and small-angle neutron scattering (SANS).

View Article and Find Full Text PDF

Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.

View Article and Find Full Text PDF

Optimal Neutron Spectrum Database for In-reactor Pu Production.

Adv Sci (Weinh)

January 2025

Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, 610200, China.

Plutonium-238 (Pu) is a scarce heat-source radioisotope used in nuclear batteries, which is produced by in-reactor irradiation of Americium-241 (Am) or Neptunium-237 (Np). Optimizing the neutron spectrum can improve the production efficiency of Pu, but currently, it is still a lack of knowledge about the optimal neutron spectrum for Pu production. Genetic algorithms and burnup algorithms are combined to identify optimal neutron spectra for Pu production under various irradiation times and flux levels, and build an optimal neutron spectrum database, which answers the questions "What is the optimal neutron spectrum for Pu production?" and "What is the maximum efficiency for Pu production" once and for all.

View Article and Find Full Text PDF

Advancing neutron imaging techniques to highest resolution with fluorescent nuclear track detectors.

Sci Rep

January 2025

High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan.

Neutron imaging is a nondestructive and noninvasive inspection technique with a wide range of potential applications. However, the fundamentals of this technique still need to be improved, one of which involves achieving micrometer scale or even better resolution, which is a challenging task. Recently, a high-resolution neutron imaging device based on fine-grained nuclear emulsions was developed.

View Article and Find Full Text PDF

The distribution of substitutional aluminum (Al) atoms in zeolites affects molecular adsorbate geometry, catalytic activity, and shape and size selectivity. Accurately determining Al positions has been challenging. We used synchrotron resonant soft x-ray diffraction (RSXRD) at multiple energies near the Al K-edge combined with molecular adsorption techniques to precisely locate "single Al" and "Al pairs" in a commercial H-ZSM-5 zeolite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!