Scintillator-based fast ion loss measurements in the EAST.

Rev Sci Instrum

Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031 Hefei, Anhui, China.

Published: November 2016

A new scintillator-based fast ion loss detector (FILD) has been installed on Experimental Advanced Superconducting Tokamak (EAST) to investigate the fast ion loss behavior in high performance plasma with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). A two dimensional 40 mm × 40 mm scintillator-coated (ZnS:Ag) stainless plate is mounted in the front of the detector, capturing the escaping fast ions. Photons from the scintillator plate are imaged with a Phantom V2010 CCD camera. The lost fast ions can be measured with the pitch angle from 60° to 120° and the gyroradius from 10 mm to 180 mm. This paper will describe the details of FILD diagnostic on EAST and describe preliminary measurements during NBI and ICRH heating.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4962245DOI Listing

Publication Analysis

Top Keywords

fast ion
12
ion loss
12
scintillator-based fast
8
fast ions
8
ion
4
loss measurements
4
measurements east
4
east scintillator-based
4
fast
4
loss detector
4

Similar Publications

Ternary NASICON-Type NaVMnFe(PO)/NC@CNTs Cathode with Reversible Multielectron Reaction and Long Life for Na-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.

Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.

View Article and Find Full Text PDF

This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries.

View Article and Find Full Text PDF

Electric aircraft such as electric aircraft and electric vehicles play a key role in the future electric aviation industry, but they put forward huge requirements for battery energy density. However, the current high-energy-density lithium battery technology still needs to be broken through. Herein, through the molecular structure design of the polymer electrolyte, a strategy of a fast migration channel and wide electrochemical window is proposed to fabricate high-voltage-resistant solid polymer electrolyte (HVPE) via in situ polymerization.

View Article and Find Full Text PDF

Exploring Tetra-/Penta-/Hexavalent Ion Substitution in Yttrium-Based Halide Solid-State Electrolytes.

Nano Lett

January 2025

Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P.R. China.

Although aliovalent ion substitution is an important strategy for enhancing ionic conductivity in halide electrolytes, the choice of doping ions is often restricted to tetravalent ions, and investigations into the intrinsic origin of the doping mechanism are lacking. In this work, we investigated the effects of Zr, Ta and W doping on the crystal structure and ionic conductivity of yttrium-based rare-earth halides. Only Zr achieves fast ion diffusion in both the (001) and (002) crystal planes by affecting the volume of the octahedron and the tetrahedral interstitial space, whereas Ta significantly enhances the ion diffusion rate in the (001) crystal plane while suppressing it in the (002) plane, and W does the opposite.

View Article and Find Full Text PDF

As an emerging ionic sensor with low-voltage operation (<1 V), biocompatibility, and stable operation in aqueous environments, organic electrochemical transistors (OECTs) have attracted significant research interest for various biofluid-related ion detection, where minor ion concentration variations can effectively reflect health or pathology states. However, OECT-based ion sensors are currently limited by restricted device transconductance g and stabilites, which severely hinder their applications in actual ion sensing scenarios. Here, ultra-sensitive multi-ion sensors based on high-performance n-type vertical OECTs (accumulation mode, g = 58 mS) for Na, K, and Ca detection in a practical biofluid (effluent from continuous renal replacement therapy), are demonstrated with high accuracy and stability, which are comparable to conventional Roche method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!