Purpose: The present study aimed to investigate the long-term effects of hydrostatic pressure on chondrocyte differentiation, as indicated by protein levels of transcription factors SOX9 and RUNX2, on transcriptional activity of SOX9, as determined by pSOX9 levels, and on the expression of polycystin-encoding genes Pkd1 and Pkd2.

Materials And Methods: ATDC5 cells were cultured in insulin-supplemented differentiation medium (ITS) and/or exposed to 14.7 kPa of hydrostatic pressure for 12, 24, 48, and 96 h. Cell extracts were assessed for SOX9, pSOX9, and RUNX2 using western immunoblotting. The Pkd1 and Pkd2 mRNA levels were detected by real-time PCR.

Results: Hydrostatic pressure resulted in an early drop in SOX9 and pSOX9 protein levels at 12 h followed by an increase from 24 h onwards. A reverse pattern was followed by RUNX2, which reached peak levels at 24 h of hydrostatic pressure-treated chondrocytes in ITS culture. Pkd1 and Pkd2 mRNA levels increased at 24 h of combined hydrostatic pressure and ITS treatment, with the latter remaining elevated up to 96 h.

Conclusions: Our data indicate that long periods of continuous hydrostatic pressure stimulate chondrocyte differentiation through a series of molecular events involving SOX9, RUNX2, and polycystins-1, 2, providing a theoretical background for functional orthopedic mechanotherapies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00056-016-0061-1DOI Listing

Publication Analysis

Top Keywords

hydrostatic pressure
24
sox9 runx2
12
continuous hydrostatic
8
chondrocyte differentiation
8
protein levels
8
sox9 psox9
8
pkd1 pkd2
8
pkd2 mrna
8
mrna levels
8
pressure
6

Similar Publications

We carried out limited enzymatic hydrolysis with trypsin on rice bran protein (RBP) pretreated by high hydrostatic pressure (HHP) in this study. The effects of the degree of hydrolysis (DH) on the structural and emulsifying properties were investigated. The results indicated that the molecular structure of RBP changed after limited enzymatic hydrolysis.

View Article and Find Full Text PDF

Nanocellulose prepared from shiitake mushroom (Lentinus edodes) stipe by high pressure homogenization and the gel-like emulsions stabilized by them.

Int J Biol Macromol

January 2025

National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Shiitake mushroom is popularly consumed thanks to its umami taste and good flavor, but its stipe is often discarded due to the rough texture and poor chewiness. In the study, high-pressure homogenization (HPH) was applied to modify the physiochemical properties of shiitake mushroom nanocellulose (SMNC), and the SMNCs were used to constructing gel-like emulsions (EGs). Atomic force microscope and cryo-scanning electron microscope observations showed that SMNCs had shorter length after HPH treatment.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) were responsible for approximately 19 million deaths in 2020, marking an increase of 18.7% since 2010. Biological decellularized patches are common therapeutic solutions for CVD such as cardiac and valve defects.

View Article and Find Full Text PDF

Pressure-driven phase transformations on MgCa(CO) huntite carbonate.

Phys Chem Chem Phys

January 2025

CELLS-ALBA Synchrotron Light Facility, Cerdanyola del Vallés, 08290, Barcelona, Spain.

Magnesium and calcium carbonate minerals are significant reservoirs of Earth's carbon and understanding their behavior under different conditions is crucial for elucidating the mechanisms of deep carbon storage. Huntite, MgCa(CO), is one of the two stable calcium magnesium carbonate phases, together with dolomite. The distinctive cation coordination environment of Ca atoms compared to calcite-type and dolomite structures makes huntite a comparatively less dense phase.

View Article and Find Full Text PDF

PMT4 Is Involved in -Glycosylation, Cell Wall Organization, Membrane Integrity, and Virulence.

J Fungi (Basel)

January 2025

Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena 1700000, Chile.

Proteins found within the fungal cell wall usually contain both - and -oligosaccharides. -glycosylation is the process where these oligosaccharides (hereinafter: glycans) are attached to asparagine residues, while in -glycosylation the glycans are covalently bound to serine or threonine residues. The family is grouped into , , and subfamilies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!