The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440615 | PMC |
http://dx.doi.org/10.1152/ajpgi.00048.2015 | DOI Listing |
Nutrients
December 2024
Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania.
Noncoding RNAs, particularly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have emerged as key players in the pathogenesis and therapeutic strategies for inflammatory bowel disease (IBD). MiRNAs, small endogenous RNA molecules that silence target mRNAs to regulate gene expression, are closely linked to immune responses and inflammatory pathways in IBD. Notably, miR-21, miR-146a, and miR-155 are consistently upregulated in IBD, influencing immune cell modulation, cytokine production, and the intestinal epithelial barrier.
View Article and Find Full Text PDFNutrients
December 2024
Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
The gut-brain axis plays an integral role in maintaining overall health, with growing evidence suggesting its impact on the development of various neuropsychiatric disorders, including depression. This review explores the complex relationship between gut microbiota and glutamate (Glu) regulation, highlighting its effect on brain health, particularly in the context of depression following certain neurological insults. We discuss how microbial populations can either facilitate or limit Glu uptake, influencing its bioavailability and predisposing to neuroinflammation and neurotoxicity.
View Article and Find Full Text PDFNutrients
December 2024
Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan.
Background: Cactus contains dietary fiber and minerals and is expected to have preventive effects against diabetes, arteriosclerosis, and other diseases. Additionally, cactus intake induces the production of short-chain fatty acids derived from the gut microbiota, which might influence immune functions. In this study, we examined the effects of a cactus (: NC)-supplemented diet on lipopolysaccharide (LPS)-induced immune responses and intestinal barrier function.
View Article and Find Full Text PDFNutrients
December 2024
Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
Background/objectives: Inflammatory bowel disease (IBD) is a chronic condition influenced by a variety of factors, including genetics, the environment, and gut microbiota. The incidence of IBD is increasing globally. Previous studies have shown that interactions between diet and gut microbiota influence the pathogenesis and treatment of IBD.
View Article and Find Full Text PDFNutrients
December 2024
Department of Pediatrics 1, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania.
The gut microbiome is essential for children's normal growth and development, with its formation aligning closely with key stages of growth. Factors like birth method, feeding practices, and antibiotic exposure significantly shape the composition and functionality of the infant gut microbiome. Small intestinal bacterial overgrowth (SIBO) involves an abnormal increase in bacteria within the small intestine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!