mTOR activation is critical for betulin treatment in renal cell carcinoma cells.

Biochem Biophys Res Commun

Department of Urology, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China. Electronic address:

Published: January 2017

AI Article Synopsis

  • Betulin, a compound from birch tree bark, shows promising anticancer properties, particularly against renal cell carcinoma (RCC) by targeting the mTOR signaling pathway.
  • Research indicates that RCC cells with active mTOR (like 786-O) are more responsive to betulin compared to those with inactive mTOR (like Caki-2), suggesting that mTOR activity is crucial for betulin's effectiveness.
  • Betulin not only reduced cancer cell growth but also impacted glucose and lactate metabolism in active mTOR cells, and manipulating key enzymes (PKM2 and HK2) influenced the drug's anticancer effects, highlighting potential for targeted RCC treatments.

Article Abstract

Betulin, a natural product isolated from the bark of the birch trees, exhibits multiple anticancer effects. Activation of mTOR signaling pathway has been found in numerous cancers, including renal cell carcinoma (RCC). Here, we attempted to study whether mTOR signaling was essential for betulin to treat RCC. Based on cell survival and colony formation assays, we found that mTOR hyperactive RCC cell line 786-O cells were more sensitive to betulin treatment compared with mTOR-inactive Caki-2 cells. Knockdown of TSC2 in Caki-2 cells had similar results to 786-O cells, and mTOR silencing in 786-O cells rescued the inhibitory effect of betulin, indicating that betulin inhibited RCC cell proliferation in an mTOR-dependent manner. Furthermore, betulin treatment decreases the levels of glucose consumption and lactate production in 786-O cells, while minimal effects were observed in Caki-2 cells. In addition, betulin significantly inhibited the expression of PKM2 and HK2 in 786-O cells. Finally, knockdown of PKM2 or HK2 in 786-O reversed the anti-proliferative effects of betulin, and overexpression of PKM2 or HK2 in Caki-2 cells enhanced the sensitivity to betulin treatment. Taken together, these findings demonstrated the critical role of mTOR activation in RCC cells to betulin treatment, suggesting that betulin might be valuable for targeted therapies in RCC patients with mTOR activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2016.11.153DOI Listing

Publication Analysis

Top Keywords

betulin treatment
20
786-o cells
20
mtor activation
12
betulin
12
pkm2 hk2
12
renal cell
8
cell carcinoma
8
cells betulin
8
mtor signaling
8
rcc cell
8

Similar Publications

: Pentacyclic triterpenoids are increasingly studied as anticancer agents with many advantages compared to synthetic chemotherapeutics. The aim of this study was to prepare liposomal and nanostructured lipid formulations including a standardized extract of silver birch () outer bark (TTs) and to evaluate their potential as anticancer agents in vitro, using Melanoma B16-F10 and Walker carcinoma cells. : Appropriate solvents were selected for efficient TTs extraction, and original recipes were used to obtain Pegylated liposomes and nanolipid complexes with entrapped TTs, comparative to pure standards (betulinic acid and doxorubicin) in similar conditions.

View Article and Find Full Text PDF

The Astragalus Membranaceus Herb Attenuates Leukemia by Inhibiting the FLI1 Oncogene and Enhancing Anti-Tumor Immunity.

Int J Mol Sci

December 2024

State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China.

Astragalus membranaceus (AM) herb is a component of traditional Chinese medicine used to treat various cancers. Herein, we demonstrate a strong anti-leukemic effect of AM injected (Ai) into the mouse model of erythroleukemia induced by Friend virus. Chemical analysis combined with mass spectrometry of AM/Ai identified the compounds Betulinic acid, Kaempferol, Hederagenin, and formononetin, all major mediators of leukemia inhibition in culture and in vivo.

View Article and Find Full Text PDF

Unlabelled: Introduction/ Background: This study aimed to introduce a gel (NEG) formulation containing betulin-loaded nanoemulsions for topical psoriasis treatment.

Materials And Methods: The prepared nanoemulsions were optimized for smaller particle size and higher drug content using a response surface methodology that exhibited uniform distribution and high drug loading (21.17±3.

View Article and Find Full Text PDF

Advancements in Betulinic Acid-Loaded Nanoformulations for Enhanced Anti-Tumor Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People's Republic of China.

Betulinic acid (BA) is a natural compound obtained from plant extracts and is known for its diverse pharmacological effects, including anti-tumor, antibacterial, anti-inflammatory, antiviral, and anti-atherosclerotic properties. Its potential in anti-tumor therapy has garnered considerable attention, particularly for the treatment of breast, lung, and liver cancers. However, the clinical utility of BA is greatly hindered by its poor water solubility, low bioavailability, and off-target toxicity.

View Article and Find Full Text PDF

Birch-Bark-Inspired Synergistic Fabrication of High-Performance Cellulosic Materials.

ACS Sustain Resour Manag

December 2024

FSCN Research Center, Organic Chemistry, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden.

There is a growing demand for the utilization of sustainable materials, such as cellulose-based alternatives, over fossil-based materials. However, the inherent drawbacks of cellulosic materials, such as extremely low wet strength and resistance to moisture, need significant improvements. Moreover, several of the commercially available wet-strength chemicals and hydrophobic agents for cellulosic material treatment are toxic or fossil-based (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!