Introduction: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is multifactorial including metabolic, genetic (e.g. PNPLA3 [patatin-like phospholipase domain-containing 3 gene]), viral factors and drugs. Besides, there is evidence for a role of copper deficiency. Aim of the study was to evaluate the role of hepatic copper content, PNPLA3 in NAFLD patients with and without metabolic syndrome (MetS).
Methods: One-hundred seventy-four NAFLD patients, who underwent liver biopsy for diagnostic work-up, were studied. Diagnosis of MetS was based on the WHO Clinical Criteria. Steatosis was semiquantified as percentage of fat containing hepatocytes and was graded according to Brunt. Histological features of non-alcoholic steatohepatitis (NASH) were assessed using the Bedossa classification. Hepatic copper content (in μg/g dry weight) was measured by flame atomic absorption spectroscopy. SNP rs738409 in PNPLA3 was investigated by RT-PCR.
Results: Mean hepatic copper content was 22.3 (19.6-25.1) μg/g. The mean percentage of histologically lipid containing hepatocytes was 42.2% (38.3-46.0) and correlated inversely with hepatic copper content (ρ=-0.358, P<0.001). By subgroup analysis this inverse correlation remained significant only in patients without MetS (OR: 0.959 [CI95%: 0.926-0.944], P=0.020). Presence of minor allele (G) of PNPLA3 was also associated with moderate/severe steatosis (≥33%) both in patients with (OR: 2.405 [CI95%: 1.220-4.744], P=0.011) and without MetS (OR: 2.481 [CI95%: 1.172-5.250], P=0.018), but was only associated with NASH (OR: 2.002 [CI95%: 1.062-3.772], P=0.032) and liver fibrosis (OR: 2.646 [CI95%: 1.299-5.389], P=0.007) in patients without MetS.
Conclusion: Hepatic copper content and PNPLA3 mutations are associated with disease activity in NAFLD patients without MetS. Presence of MetS appears to mask the effects of hepatic copper and PNPLA3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2016.08.006 | DOI Listing |
J Gastrointestin Liver Dis
December 2024
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
Background And Aims: Wilson disease (WD) results in the defective incorporation of copper into ceruloplasmin as well as decreased biliary copper excretion. Secondary iron overload has also been associated with WD; however, the prevalence is currently unknown. This study aims to determine the prevalence of potential secondary iron overload in patients suspected to have WD.
View Article and Find Full Text PDFJ Mol Histol
November 2024
Anatomy and Embryology Department, College of Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
Int J Mol Sci
November 2024
Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland.
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
National Reference Center for Wilson Disease and Other Rare Copper Related Diseases, Hôpital Fondation Adolphe de Rothschild, Paris, France.
Biomater Adv
March 2025
School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. Electronic address:
Copper sulfide nanoparticles (NPs) synthesized through biomineralization have significant commercial potential as photothermal agents, while the safety evaluation of these NPs, especially for patients with non-alcoholic fatty liver (NAFL), remains insufficient. To explore the differential hepatotoxicity of copper sulfide NPs in NAFL conditions, we synthesized large-sized (LNPs, 15.1 nm) and small-sized (SNPs, 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!