The DO ice VI to ice XV hydrogen ordering phase transition at ambient pressure is investigated in detail with neutron diffraction. The lattice constants are found to be sensitive indicators for hydrogen ordering. The a and b lattice constants contract whereas a pronounced expansion in c is found upon hydrogen ordering. Overall, the hydrogen ordering transition goes along with a small increase in volume, which explains why the phase transition is more difficult to observe upon cooling under pressure. Slow-cooling ice VI at 1.4 GPa gives essentially fully hydrogen-disordered ice VI. Consistent with earlier studies, the ice XV obtained after slow-cooling at ambient pressure is best described with P-1 space group symmetry. Using a new modelling approach, we achieve the atomistic reconstruction of a supercell structure that is consistent with the average partially ordered structure derived from Rietveld refinements. This shows that C-type networks are most prevalent in ice XV, but other structural motifs outside of the classifications of the fully hydrogen-ordered networks are identified as well. The recently proposed Pmmn structural model for ice XV is found to be incompatible with our diffraction data, and we argue that only structural models that are capable of describing full hydrogen order should be used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4967167 | DOI Listing |
Environ Res
December 2024
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, PR China. Electronic address:
This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m g with a high pore volume, but also has abundant oxygen-containing functional groups.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2024
Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
Acetogenic bacteria play an important role in various biotechnological processes, because of their chemolithoautotrophic metabolism converting carbon dioxide with molecular hydrogen (H) as electron donor into acetate. As the main factor limiting acetogenesis is often H, insights into the H consumption kinetics of acetogens are required to assess their potential in biotechnological processes. In this study, initial H consumption rates at a range of different initial H concentrations were measured for three different acetogens.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Coalbed Methane Resource and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou, China.
This analysis revealed the alterations in the pore structure of large organic molecules in coal during the process of coal pyrolysis. Nine models of macromolecular structures in coals, representing distinct coal ranks, have been built. The research results show that along with the increasing coal rank, the average microporous volume of medium rank coal is 0.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina. Electronic address:
Here, we show that the replacement of the distal residues Asp and/or Arg of the DyP peroxidases from Bacillus subtilis and Pseudomonas putida results in functional enzymes, albeit with spectroscopically perturbed active sites. All the enzymes can be activated either by the addition of exogenous HO or by in situ electrochemical generation of the reactive oxygen species (ROS) OH, O and HO. The latter method leads to broader and upshifted pH-activity profiles.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria.
The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!