Quinolinic acid (QA) is a metabolite of tryptophan degradation obtained through kynurenine pathway, produced naturally in the mammalian brain as well as in the human cerebrospinal fluid. The presence of QA ~10-40µM is a clear indicator of many neurological disorders as well as deficiency of vitamin B in human being. In the present work; rapid, sensitive and cost-effective bio-electrodes were prepared to detect the trace amount of endogenous neurotoxin (QA). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies were carried out to measure the electrochemical response of the fabricated bio-electrodes as a function of QA concentrations. These devices were found to exhibit desirable sensitivity of ~7.86mAμMcm in wide concentration range (6.5μM-65mM). The lower detection limit of this device is as low as 6.5μM and it has excellent storage stability of ~30 days. The capability of the proposed electrochemical bio-sensor was also checked to detect QA in the real samples (human serum). These results reveal that the use of this electrochemical bio-sensor may provide a potential platform for the detection of QA in the real samples for the prior detection of many diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2016.11.053DOI Listing

Publication Analysis

Top Keywords

excellent storage
8
storage stability
8
quinolinic acid
8
electrochemical bio-sensor
8
real samples
8
stability sensitive
4
detection
4
sensitive detection
4
detection neurotoxin
4
neurotoxin quinolinic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!