Making a microbiome: the many determinants of host-associated microbial community composition.

Curr Opin Microbiol

Department of Entomology, Cornell University, Ithaca 14853, NY, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca 14853, NY, USA. Electronic address:

Published: February 2017

The composition of many host-associated microbial communities is characterized by seemingly contradictory features: strong selection for specific taxa by the host, but substantial variability among hosts and over time within one host. Recent advances have revealed that both deterministic and stochastic processes operating across multiple spatial scales shape the composition of host-associated microbial communities. Although most research has focused on deterministic processes within individual hosts, the microbiota within each host is increasingly recognized to contribute to a wider metacommunity maintained by transmission between individual hosts and dispersal between host-associated and free-living microbial communities. By applying a community ecology perspective encompassing the microbial metacommunity, the many determinants of host-associated microbial community composition can be identified, guiding the directions of future research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mib.2016.11.002DOI Listing

Publication Analysis

Top Keywords

host-associated microbial
16
microbial communities
12
determinants host-associated
8
microbial community
8
community composition
8
composition host-associated
8
individual hosts
8
microbial
6
host-associated
5
making microbiome
4

Similar Publications

Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments.

View Article and Find Full Text PDF

Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.

View Article and Find Full Text PDF

Multicellular organisms host a rich assemblage of associated microorganisms, collectively known as their "microbiomes". Microbiomes have the capacity to influence their hosts' fitnesses, but the conditions under which such influences contribute to evolution are not clear. This is due in part to a lack of a comprehensive theoretical framework for describing the combined effects of host and associated microbes on phenotypic variation.

View Article and Find Full Text PDF

Knowledge of spatial distribution patterns of biodiversity is key to evaluate and ensure ocean integrity and resilience. Especially for the deep ocean, where in situ monitoring requires sophisticated instruments and considerable financial investments, modeling approaches are crucial to move from scattered data points to predictive continuous maps. Those modeling approaches are commonly run on the macrobial level, but spatio-temporal predictions of host-associated microbiomes are not being targeted.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how factors like plant species, temperature, and microbial competition affect the composition of microbes in floral nectar, which is important for plant health and pollination.
  • By inoculating yeasts and bacteria into nectars of 31 plant species and analyzing the resulting communities, researchers found that plant species strongly influence microbial abundance and composition, with variations attributed to plant phylogeny and nectar peroxide content.
  • Higher temperatures were shown to decrease microbial diversity and affect growth; consistent microbial communities could help plants and pollinators adapt, highlighting the significance of host identity and environmental conditions in microbial community dynamics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!