Prediction of autosomal STR typing success in ancient and Second World War bone samples.

Forensic Sci Int Genet

University of Ljubljana, Faculty of Arts, Department of Archaeology, Aškerčeva 2, 1000 Ljubljana, Slovenia; Institute for the Protection of Cultural Heritage, Centre for Preventive Archaeology, Poljanska 40, 1000 Ljubljana, Slovenia.

Published: March 2017

Human-specific quantitative PCR (qPCR) has been developed for forensic use in the last 10 years and is the preferred DNA quantification technique since it is very accurate, sensitive, objective, time-effective and automatable. The amount of information that can be gleaned from a single quantification reaction using commercially available quantification kits has increased from the quantity of nuclear DNA to the amount of male DNA, presence of inhibitors and, most recently, to the degree of DNA degradation. In skeletal remains samples from disaster victims, missing persons and war conflict victims, the DNA is usually degraded. Therefore the new commercial qPCR kits able to assess the degree of degradation are potentially able to predict the success of downstream short tandem repeat (STR) typing. The goal of this study was to verify the quantification step using the PowerQuant kit with regard to its suitability as a screening method for autosomal STR typing success on ancient and Second World War (WWII) skeletal remains. We analysed 60 skeletons excavated from five archaeological sites and four WWII mass graves from Slovenia. The bones were cleaned, surface contamination was removed and the bones ground to a powder. Genomic DNA was obtained from 0.5g of bone powder after total demineralization. The DNA was purified using a Biorobot EZ1 device. Following PowerQuant quantification, DNA samples were subjected to autosomal STR amplification using the NGM kit. Up to 2.51ng DNA/g of powder were extracted. No inhibition was detected in any of bones analysed. 82% of the WWII bones gave full profiles while 73% of the ancient bones gave profiles not suitable for interpretation. Four bone extracts yielded no detectable amplification or zero quantification results and no profiles were obtained from any of them. Full or useful partial profiles were produced only from bone extracts where short autosomal (Auto) and long degradation (Deg) PowerQuant targets were detected. It is concluded that STR typing of old bones after quantification with the PowerQuant should be performed only when both Auto and Deg targets are detected simultaneously with no respect to [Auto]/[Deg] ratio. Prediction of STR typing success could be made according to successful amplification of Deg fragment. The PowerQuant kit is capable of identifying bone DNA samples that will not yield useful STR profiles using the NGM kit, and it can be used as a predictor of autosomal STR typing success of bone extracts obtained from ancient and WWII skeletal remains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsigen.2016.11.004DOI Listing

Publication Analysis

Top Keywords

str typing
24
autosomal str
16
typing success
16
skeletal remains
12
bone extracts
12
dna
9
str
8
success ancient
8
ancient second
8
second war
8

Similar Publications

Y-chromosome short tandem repeats (Y-STRs) loci have significant research and application value in individual identification, parentage testing, kinship determination and genealogical DNA analysis due to their unique genetic characteristics. Currently, various commercial STR typing kits have used in forensic detection, which greatly promoting the scientific application of STR in criminal investigation and judicial trials. However, due to the complexity and specificity of biological samples, the special STR typing in the sample poses certain difficulties for the construction of DNA databases.

View Article and Find Full Text PDF

An investigation of downstream processing methods for challenging skeletal samples.

Forensic Sci Int Genet

December 2024

Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, TX, USA.

While skeletal remains are known for their resilience and often serve as the final source of information for unidentified human remains (UHRs), the traditional downstream processing of these samples is challenging due to their low template nature, DNA degradation, and the presence of PCR inhibitors, typically resulting in limited probative information. To address this issue, advanced genotyping methods can be explored to retrieve additional genetic information from these challenging samples to maximize investigative leads. Therefore, this study investigated the effectiveness of three advanced genotyping methods and assessed their suitability with compromised skeletal samples: 1) targeted next generation sequencing (NGS) of both STRs and SNPs using the ForenSeq® DNA Signature Prep chemistry, 2) targeted NGS of SNPs using the ForenSeq® Kintelligence kit, and 3) SNP genotyping using a microarray via the Infinium Global Screening Array.

View Article and Find Full Text PDF

DNA identification of human skeletal remains play a valuable role in the forensic field, especially in missing persons and mass disasters investigation. Hard tissues, such as bones and teeth, represent a very common kind of samples analyzed in forensic laboratories because often they are the only biological materials remaining. However, the major limitation in using these compact samples rely on time consuming and labor-intensive treatment of grinding them into powder before proceeding with the conventional DNA purification and extraction step.

View Article and Find Full Text PDF

Short tandem repeats (STRs) represent one of the most polymorphic variations in the human genome, finding extensive applications in forensics, population genetics and medical genetics. In contrast to the traditional capillary electrophoresis (CE) method, genotyping STRs using massive parallel sequencing technology offers enhanced sensitivity and accuracy. However, current methods are mainly designed for target sequencing with higher coverage for a specific STR locus, thereby constraining the utility of STRs in low- and medium-coverage whole genome sequencing (WGS) data.

View Article and Find Full Text PDF

Aggressive chemicals intended for cleaning pools or unclogging drains contain high concentrations of dangerous compounds, leading to their nefarious use in dissolving human remains in some criminal cases. The use of these readily accessible household cleaners to destroy human remains and hide evidence of a crime presents a considerable challenge for human identification. However, research on the success of recovering DNA from such remains is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!