The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131898 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1005955 | DOI Listing |
Antiviral Res
March 2025
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071/430207, China; State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071/430207, China; Hubei Jiangxia Laboratory, Wuhan 430207, China. Electronic address:
Broad-spectrum antivirals (BSAs) possess unique advantages of being effective against a wide range of both existing and unpredictable emerging viral infections. The host type I interferon (IFN) response serves as a universal defense against diverse viral infections nonspecifically, providing attractive targets to develop novel BSAs. In this study, we identified the flavonoid kaempferide as an enhancer of the type I IFN activated Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, promoting the expression of IFN stimulated genes (ISGs) and the establishment of cellular antiviral status.
View Article and Find Full Text PDFJ Immunol
January 2025
Institute of Virology and Immunology, Mittelhäusern, Switzerland.
While several African swine fever virus (ASFV)-encoded proteins potently interfere with the cGAS-STING (cyclic GMP-AMP synthetase-stimulator of interferon genes) pathway at different levels to suppress interferon (IFN) type I production in infected macrophages, systemic IFN-α is induced during the early stages of AFSV infection in pigs. The present study elucidates a mechanism by which such responses can be triggered, at least in vitro. We demonstrate that infection of monocyte-derived macrophages (MDMs) by ASFV genotype 2 strains is highly efficient but immunologically silent with respect to IFN type I, IFN-stimulated gene induction, and tumor necrosis factor production.
View Article and Find Full Text PDFJ Immunol
February 2025
Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States.
Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation.
View Article and Find Full Text PDFJ Immunol
March 2025
School of Life Science, Nanchang University, Nanchang, China.
Transactive response DNA binding protein 43 kD (TDP43), encoded by the tardbp gene, is a member of heterogenous nuclear ribonucleoproteins family. In this study, a gradual upregulation of TDP43 messenger RNA was observed in either Ctenopharyngodon idella kidney cells or zebrafish following stimulation with B-DNA, grass carp reovirus, or spring viremia of carp virus. Moreover, grass carp reovirus stimulation enhances the dimerization, phosphorylation, and cytoplasm-to-nucleus translocation of TDP43 in zebrafish (DrTDP43).
View Article and Find Full Text PDFJ Immunol
March 2025
Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
Alveolar macrophages (AMs) are lung-resident myeloid cells and airway sentinels for inhaled pathogens and environmental particles. While AMs can be highly inflammatory in response to respiratory viruses, they do not mount proinflammatory responses to all airborne pathogens. For example, we previously showed that AMs fail to mount a robust proinflammatory response to Mycobacterium tuberculosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!