Molecular Characterization of Two Monoclonal Antibodies against the Same Epitope on B-Cell Receptor Associated Protein 31.

PLoS One

Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea.

Published: June 2017

Previously, we showed that B-cell receptor associated protein 31 (BAP31), an endoplasmic reticulum (ER) membrane chaperone, is also expressed on the cell surface by two monoclonal antibodies (MAbs) 297-D4 and 144-A8. Both MAbs recognize the same linear epitope on the C-terminal domain of BAP31, although they were independently established. Here, flow cytometric analysis showed that 144-A8 had additional binding properties to some cells, as compared to 297-D4. Quantitative antigen binding assays also showed that 144-A8 had higher antigen binding capacity than 297-D4. Affinity measurement revealed that 144-A8 had 1.54-fold higher binding affinity than 297-D4. Analysis of the heavy- and light-chain variable region sequences of two MAbs revealed that both MAbs belonged to the same heavy chain (Igh-V3660 VH3) and light chain subgroup (IGKV21) with just two amino acid differences in each framework region, indicating that both MAbs arise from the same germline origin. Seven amino acid differences were found between the complementarity determining regions (CDRs) of the two MAbs. Molecular modeling of the epitope-paratope complexes revealed that the epitope appeared to reside in closer proximity to the CDRs of 144-A8 than to those of 297-D4 with the stronger hydrogen bond interactions with the former than the latter. More interestingly, an additional hydrophobic interaction appeared to be established between the leucine residue of epitope and the paratope of 144-A8, due to the substitution of H-Tyr101 for H-Phe101 in 144-A8. Thus, the different binding specificity and affinity of 144-A8 appeared to be due to the different hydrogen bonds and hydrophobic interaction induced by the alterations of amino acids in CDRs of 144-A8. The results provide molecular insights into how the binding specificities and affinities of antibodies evolve with the same epitope in different microenvironments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131989PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167527PLOS

Publication Analysis

Top Keywords

144-a8
9
monoclonal antibodies
8
b-cell receptor
8
receptor associated
8
associated protein
8
antigen binding
8
amino acid
8
acid differences
8
cdrs 144-a8
8
hydrophobic interaction
8

Similar Publications

Molecular Characterization of Two Monoclonal Antibodies against the Same Epitope on B-Cell Receptor Associated Protein 31.

PLoS One

June 2017

Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea.

Previously, we showed that B-cell receptor associated protein 31 (BAP31), an endoplasmic reticulum (ER) membrane chaperone, is also expressed on the cell surface by two monoclonal antibodies (MAbs) 297-D4 and 144-A8. Both MAbs recognize the same linear epitope on the C-terminal domain of BAP31, although they were independently established. Here, flow cytometric analysis showed that 144-A8 had additional binding properties to some cells, as compared to 297-D4.

View Article and Find Full Text PDF

When located in the endoplasmic reticulum (ER) membrane, B-cell receptor associated protein 31 (BAP31) is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs), 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs), but not to surface molecules on mouse embryonic stem cells (mESCs). Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!