This is the first known study of exposure of Rn (radon) and secondarily Rn (thoron) in-air activity concentrations assessed within nine selected wine cellars in four wine districts of the Western Cape (South Africa) and the associated annual occupational effective doses. E-PERM electret ion chambers (EIC) and RAD-7 α-detectors were used to perform these measurements. The radon in-air levels ranged from 12 ± 4 Bq m to 770 ± 40 Bq m within the nine selected wine cellars. Eight of the nine wine cellars (excluding results from cellar w-6) had a median radon in-air activity concentration of 48 ± 8 Bq m. Continuous thoron in-air activity concentration levels were also measured near an internal granite wall of the wine cellar w-6 (barrel room), where peak levels of up to 1,520 ± 190 Bq m and an average of 680 ± 30 Bq m were observed. The occupational annual effective dose due to radon and decay progeny exposure in-air within the selected wine cellars ranged from 0.08 ± 0.03 mSv to 4.9 ± 0.3 mSv with a median of 0.32 ± 0.04 mSv (Tmax = 2,000 h). The annual effective dose within the wine cellar (w-6) ranged up to a maximum of 2.5 ± 0.4 mSv (Tmax = 2000 h) due to exposure to thoron and decay progeny. In general, most of the wines cellars pose negligible associated health risk to personnel due to ionizing radiation exposure from the inhalation of radon and progeny. Under certain conditions (proximity and exposure time), caution should be exercised at wine cellar w-6 because of elevated thoron in-air levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HP.0000000000000574 | DOI Listing |
Food Microbiol
April 2025
Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain. Electronic address:
Lactic acid bacteria (LAB), principally Oenococcus oeni, play crucial roles in wine production, contributing to the transformation of L-malic acid into L-lactic acid during malolactic fermentation (MLF). This fermentation is influenced by different factors, including the initial LAB population and wine stress factors, such as nutrient availability. Yeast mannoproteins can enhance LAB survival in wine.
View Article and Find Full Text PDFMicrob Cell Fact
August 2024
Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, 46980, Paterna, Valencia, Spain.
Background: Global warming causes an increase in the levels of sugars in grapes and hence in ethanol after wine fermentation. Therefore, alcohol reduction is a major target in modern oenology. Deletion of the MKS1 gene, a negative regulator of the Retrograde Response pathway, in Saccharomyces cerevisiae was reported to increase glycerol and reduce ethanol and acetic acid in wine.
View Article and Find Full Text PDFHeliyon
July 2024
Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China. Electronic address:
Discrimination of segmented Baijiu contributes to stabilizing the quality of products, improving revenue-generating effects. A fluorescence sensor array is constructed based on four fluorescence characteristic peaks of terbium@lanthanum metal-organic framework (Tb@La-MOF). Its fluorescence signal is specifically quenched, when Tb@La-MOF encounters acetaldehyde.
View Article and Find Full Text PDFFoods
June 2024
Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
The aging process of wine is influenced by various factors, including the presence of oxygen, the temperature, and the storage conditions. While oxygen can have both positive and negative effects on wine quality, temperature fluctuations during storage can impact its chemical composition. This study has investigated the aging of Merlot and Sangiovese wines under traditional cellar conditions and underwater, exploring the influence of storage parameters on their chemical evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!