Successful tissue engineered small diameter blood vessels (SDBV) require manufacturing systems capable of precisely controlling different key elements, such as material composition, geometry and spatial location of specialized biomaterials and cells types. We report in this work an automated methodology that enables the manufacture of multilayer cylindrical constructs for SDBV fabrication that uses a layer-by-layer deposition approach while controlling variables such as dipping and spinning speed of a rod and biomaterial viscosity. Different biomaterials including methacrylated gelatin, alginate and chitosan were tested using this procedure to build different parts of the constructs. The system was capable of controlling dimensions of lumen from 0.5 mm up to 6 mm diameter and individual layers from 1 μm up to 400 μm thick. A cellular component was successfully added to the biomaterial in the absence of significant cytotoxic effect which was assessed by viability and proliferation assays. Additionally, cells showed a homogenous distribution with well-defined concentric patterns across the multilayer vessel grafts. The challenging generation of inner endothelial cells of approximately 20-30 μm of thickness was achieved. Preliminary experimental evidences of microstructural alignment of the biomaterial were obtained when the dipping approach was combined with the rod rotation. The study demonstrated the wide versatility and scalability of the automated system to easily and rapidly fabricate complex cellularized multilayer vascular grafts with structural configuration that resembles natural blood vessels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/9/1/015001 | DOI Listing |
Surg Endosc
January 2025
Clinica Chirurgica, Department of Experimental and Clinical Medicine, Section of Surgical Sciences, Polytechnic University of Marche, Ancona, Italy.
Introduction: Altered vascular microcirculation is recognized as a risk factor for anastomotic leakage (AL) in colorectal surgery. However, few studies evaluated its impact on AL using different devices, with heterogeneous results. The present study reported the initial experience measuring gut microcirculatory density and flow with the aid of incidence dark-field (IDF) videomicroscopy (Cytocam, Braedius, Amsterdam, The Netherlands) comparing its operative outcome using a propensity score matching (PSM) model based on age, gender, and Charlson Comorbidity Index (CCI).
View Article and Find Full Text PDFCell Death Differ
January 2025
Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China.
Cancer stem cells (CSCs) typically reside in perivascular niches, but whether endothelial cells of blood vessels influence the stemness of cancer cells remains poorly understood. This study revealed that endothelial cell-specific GLTSCR1 deletion promotes colorectal cancer (CRC) tumorigenesis and metastasis by increasing cancer cell stemness. Mechanistically, knocking down GLTSCR1 induces the transformation of endothelial cells into tip cells by regulating the expression of Neuropilin-1 (NRP1), thereby increasing the direct contact and interaction between endothelial cells and tumour cells.
View Article and Find Full Text PDFSci Rep
January 2025
Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.
Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Data Science and Artificial Intelligence, Sunway University, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
Precise segmentation of retinal vasculature is crucial for the early detection, diagnosis, and treatment of vision-threatening ailments. However, this task is challenging due to limited contextual information, variations in vessel thicknesses, the complexity of vessel structures, and the potential for confusion with lesions. In this paper, we introduce a novel approach, the MSMA Net model, which overcomes these challenges by replacing traditional convolution blocks and skip connections with an improved multi-scale squeeze and excitation block (MSSE Block) and Bottleneck residual paths (B-Res paths) with spatial attention blocks (SAB).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, The University of Lahore, Lahore, Pakistan.
This current study has been carried out to investigate the angiogenic potential and in silico studies of designed thermoplastic polyurethanes (PU) for biomedical potential. For this purpose, curcumin based thermoplastic polyurethanes has been synthesized by two step methodology. Different characterization techniques such as FTIR, solid state HNMR, CNMR and XRD were used to confirm the synthesis of designed thermoplastic polyurethanes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!