Aberrant sialylation profiles on the cell surface have been recognized for their potential diagnostic value in identifying the regulation of tumor properties in several cancers, including hepatocellular carcinoma (HCC). Recently, increasing evidence has suggested that the deregulation of microRNA (miRNA) is a common feature in human cancers. In this study, we found obvious upregulation of sialyltransferase ST3GAL6 both in HCC cell lines and in tissue samples. The altered expression of ST3GAL6 was found to correlate with cell proliferation, migration, and invasion ability in HCC. Further investigation showed that miR-26a negatively regulated ST3GAL6, inducing the suppression of cell proliferation, migration, and invasion in vitro. Moreover, we identified the protein kinase B/mammalian target of rapamycin (Akt/mTOR) pathway as the target of ST3GAL6 based on Western blot analysis. Analysis of a xenograft mouse model showed that miR-26a significantly reduced tumor growth by suppressing activation of the Akt/mTOR pathway by directly targeting ST3GAL6. In conclusion, these data indicate that ST3GAL6 promotes cell growth, migration, and invasion and mediates the effect of miR-26a through the Akt/mTOR signaling pathway in HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5329153PMC
http://dx.doi.org/10.1111/cas.13128DOI Listing

Publication Analysis

Top Keywords

migration invasion
16
sialyltransferase st3gal6
8
cell growth
8
growth migration
8
hepatocellular carcinoma
8
protein kinase
8
kinase b/mammalian
8
b/mammalian target
8
target rapamycin
8
cell proliferation
8

Similar Publications

CPSF4-mediated regulation of alternative splicing of HMG20B facilitates the progression of triple-negative breast cancer.

J Transl Med

December 2024

Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.

Background: Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.

View Article and Find Full Text PDF

Breast cancer (BRCA) is one of the pivotal causes of female death worldwide. And the morbidity and mortality of breast cancer have increased rapidly. Immune checkpoints are important to maintain immune tolerance and are regarded as important therapeutic targets.

View Article and Find Full Text PDF

Accurate and timely genetic material replication is essential for preserving genomic integrity. The replication process begins with chromatin licensing and DNA replication factor 1 (CDT1). It has been demonstrated that dysregulated CDT1 expression causes genomic instability, damages DNA, and may even cause cancer.

View Article and Find Full Text PDF

Constitutive androstane receptor (CAR) is a xenosensor that is almost exclusively expressed in the liver. Studies in rodents suggest an oncogenic role for CAR in liver cancer, but its role in human liver cancer is unclear. We aimed to investigate the functional roles of CAR in human liver cancer with a focus on the liver cancer stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!