We present an original type of one-dimensional photonic crystal that includes one anisotropic layer made of a lithium niobate thin film. We demonstrate the versatility of such a device sustaining different Bloch surface waves (BSWs), depending on the orientation of the incident wave. By varying the orientation of the illumination of the multilayer, we measured an angle variation of 7° between the BSWs corresponding to the extraordinary and the ordinary index of the lithium niobate thin film. The potential of such a platform opens the way to novel tunable and active planar optics based on the electro- and thermo-optical properties of lithium niobate.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.41.005616DOI Listing

Publication Analysis

Top Keywords

lithium niobate
16
niobate thin
12
bloch surface
8
surface waves
8
thin film
8
tunable bloch
4
waves anisotropic
4
anisotropic photonic
4
photonic crystals
4
crystals based
4

Similar Publications

Lithium niobate (LiNbO) has shown great potential for applications in nonlinear metasurfaces, thanks to its large second-order nonlinear coefficients and high integration capabilities. Optical resonances play a crucial role in further enhancing the nonlinear optical responses of LiNbO metasurfaces (LNMS). In this study, both numerically and experimentally, we designed and fabricated a metasurface structure that supports toroidal dipole (TD) resonance to enhance second-harmonic generation (SHG).

View Article and Find Full Text PDF

Terahertz (THz) parametric detection is a highly sensitive method that upconverts a THz wave into a near-infrared beam for detection. Lithium niobate has primarily been used as the nonlinear optical crystal in this approach. However, the frequency band with high parametric gain is limited, leading to increasing interest in other nonlinear optical crystals.

View Article and Find Full Text PDF

Toward Large-Scale Photonic Chips Using Low-Anisotropy Thin-Film Lithium-Tantalate.

Adv Sci (Weinh)

January 2025

College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.

View Article and Find Full Text PDF

MoTe Photodetector for Integrated Lithium Niobate Photonics.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.

The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!