Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing-conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.41.005438DOI Listing

Publication Analysis

Top Keywords

nonlinear interferometer
8
nonlinear
6
naturally stable
4
stable sagnac-michelson
4
sagnac-michelson nonlinear
4
interferometer interferometers
4
interferometers measure
4
measure wide
4
wide variety
4
variety dynamic
4

Similar Publications

Lithium niobate on insulator - fundamental opto-electronic properties and photonic device prospects.

Nanophotonics

July 2024

State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.

Lithium niobate on insulator (LNOI) combines a variety of optoelectronic properties and can meet practical performance requirements that are uncommon in optoelectronic materials. This review introduces the fundamentals and the photonic device concepts that arise from the LNOI materials platform. Firstly, the nonlinear optical response of LNOI is presented, including birefringent phase matching (BPM), modal phase matching (MPM), and quasi-phase matching (QPM).

View Article and Find Full Text PDF

Wavelength-Switchable Ytterbium-Doped Mode-Locked Fiber Laser Based on a Vernier Effect Filter.

Micromachines (Basel)

October 2024

School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China.

A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach-Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier effect sensor, the wavelength-switchable output of an ytterbium-doped mode-locked fiber laser is realized.

View Article and Find Full Text PDF

Microelectromechanical system (MEMS) Fabry-Perot fiber-integrated pressure sensor exhibits a compact size, intrinsic safety, and high precision measurement. Here, a MEMS Fabry-Perot interferometer sensor is presented. The sensor is fabricated using a standard microfabrication process with a uniformity of 80%.

View Article and Find Full Text PDF

Cryogenic trapped-ion systems (CTISs) have emerged as indispensable platforms for the advancement of quantum computation and precision measurement techniques. However, the sensitivity of these systems to vibrational noise, especially during the compression and expansion cycles of the cold head in a Gifford-McMahon cycle refrigerator (GMCR), poses a significant challenge. To mitigate this, we have crafted an innovative methodology for characterizing low-frequency residual vibrational noise in closed-cycle cryogenic trapped-ion systems.

View Article and Find Full Text PDF

Polarization-entangled photons are indispensable to numerous quantum technologies and fundamental studies. In this paper, we propose and demonstrate what we believe to be a novel source that generates collinear polarization-entangled photons by simultaneously achieving two distinct types of phase-matching conditions (noncritically birefringent and quasi phase matching) in a periodically poled nonlinear crystal with a large poling period of 2 mm. The photon pairs are generated in a polarization-entangled state with a fidelity and concurrence of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!