Background: Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) is a major contributor to the development of atherosclerotic process. In a previous work, we demonstrated that the insulin receptor isoform A (IRA) and its association with the insulin-like growth factor-I receptor (IGF-IR) confer a proliferative advantage to VSMCs. However, the role of IR and IGF-IR in VSMC migration remains poorly understood.

Methods: Wound healing assays were performed in VSMCs bearing IR (IRLoxP VSMCs), or not (IR VSMCs), expressing IRA (IRA VSMCs) or expressing IRB (IRB VSMCs). To study the role of IR isoforms and IGF-IR in experimental atherosclerosis, we used ApoE mice at 8, 12, 18 and 24 weeks of age. Finally, we analyzed the mRNA expression of total IR, IRB isoform, IGF-IR and IGFs by qRT-PCR in the medial layer of human aortas.

Results: IGF-I strongly induced migration of the four cell lines through IGF-IR. In contrast, insulin and IGF-II only caused a significant increase of IRA VSMC migration which might be favored by the formation of IRA/IGF-IR receptors. Additionally, a specific IGF-IR inhibitor, picropodophyllin, completely abolished insulin- and IGF-II-induced migration in IRB, but not in IRA VSMCs. A significant increase of IRA and IGF-IR, and VSMC migration were observed in fibrous plaques from 24-week-old ApoE mice. Finally, we observed a marked increase of IGF-IR, IGF-I and IGF-II in media from fatty streaks as compared with both healthy aortas and fibrolipidic lesions, favoring the ability of medial VSMCs to migrate into the intima.

Conclusions: Our data suggest that overexpression of IGF-IR or IRA isoform, as homodimers or as part of IRA/IGF-IR hybrid receptors, confers a stronger migratory capability to VSMCs as might occur in early stages of atherosclerotic process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134076PMC
http://dx.doi.org/10.1186/s12933-016-0477-3DOI Listing

Publication Analysis

Top Keywords

vsmc migration
12
igf-ir
10
vsmcs
10
insulin receptor
8
isoforms igf-ir
8
hybrid receptors
8
vascular smooth
8
smooth muscle
8
muscle cells
8
atherosclerotic process
8

Similar Publications

Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.

View Article and Find Full Text PDF

VSMC-specific TRPC1 deletion attenuates angiotensin II-induced hypertension and cardiovascular remodeling.

J Mol Med (Berl)

January 2025

Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.

Article Synopsis
  • TRPC1 is a ion channel linked to cardiovascular issues, with increased expression observed in both treated vascular smooth muscle cells (VSMCs) and aortas of hypertensive mice.
  • Lack of TRPC1 in VSMCs significantly reduces AngII-induced effects like vasoconstriction, hypertension, and heart changes, indicating its crucial role in these processes.
  • The study identifies the EZH2-TRPC1-MEK/ERK pathway as a significant contributor to hypertension, suggesting that targeting TRPC1 or EZH2 could be effective in treating high blood pressure and related cardiovascular problems.
View Article and Find Full Text PDF

Objective: Hypertension significantly contributes to morbidity and mortality. Nuclear receptor subfamily 4 group a member 1 (Nur77) participates in regulating oxidative stress, but the mechanism in hypertension remains unclear. This study aimed to explore the function of Nur77 in oxidative stress induced by Angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) in hypertension.

View Article and Find Full Text PDF

Functional screening identifies miRNAs with a novel function inhibiting vascular smooth muscle cell proliferation.

Mol Ther

December 2024

Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), 6229HX Maastricht, the Netherlands. Electronic address:

Article Synopsis
  • The study identifies seven microRNAs (miRNAs) that inhibit the proliferation of vascular smooth muscle cells (vSMCs), important in preventing vascular remodeling issues.
  • Through high-throughput screening of 2,042 human miRNA mimics, the researchers pinpointed miR-323a-3p, miR-449b-5p, miR-491-3p, miR-892b, miR-1827, miR-4774-3p, and miR-5681b as effective in reducing vSMC proliferation.
  • The findings suggest these miRNAs could be developed into therapeutic agents, particularly for conditions like vein graft failure, showing minimal toxicity and altering key cell-cycle gene networks involved in
View Article and Find Full Text PDF

Nox1/PAK1 is required for angiotensin II-induced vascular inflammation and abdominal aortic aneurysm formation.

Redox Biol

February 2025

Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, PR China. Electronic address:

NADPH oxidase 1 (Nox1) is a major isoform of Nox in vascular smooth muscle cells (VSMCs). VSMC activation and extracellular matrix (ECM) remodelling induce abdominal aortic aneurysm (AAA). In this study, we aim to determine the role of Nox1 in the progression of AAA and explore the underling mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!