Iron is essential for the oxidative metabolism of lipids. Lipid metabolism changes during gestation to meet the requirements of the growing fetus and to prepare for lactation. The temporal effects of iron deficiency during gestation were studied in female rats fed complete or iron-deficient diets. Plasma triglycerides were elevated in the iron-deficient group throughout gestation. There were time-dependent changes in the triglyceride content of the maternal liver, falling at the midpoint of gestation and then increasing on d21.5. Compared to the control, triglycerides in the maternal liver were not different in the iron-deficient group prior to pregnancy and on d12.5, but were markedly reduced by d21.5. The abundance of mRNAs in the maternal liver suggests that lipogenesis is unchanged and beta-oxidation is reduced on d21.5 by iron deficiency. On d21.5 of gestation, the expression of placental lipase was unchanged by iron deficiency, however, the abundance of mRNAs for SREBP-1c, FABP4 were reduced, suggesting that there were changes in fatty acid handling. In the fetal liver, iron deficiency produced a marked decrease in the abundance of the L-CPT-1 mRNA, suggesting that beta-oxidation is reduced. This study shows that the major effect of iron deficiency on maternal lipid metabolism occurs late in gestation and that perturbed lipid metabolism may be a common feature of models of fetal programming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112487PMC
http://dx.doi.org/10.14814/phy2.12908DOI Listing

Publication Analysis

Top Keywords

iron deficiency
24
lipid metabolism
12
maternal liver
12
iron-deficient group
8
reduced d215
8
abundance mrnas
8
beta-oxidation reduced
8
iron
7
gestation
6
metabolism
5

Similar Publications

Anemia of prematurity (AOP) is a multifactorial condition associated with congenital iron deficiency, low erythropoietin levels, a short lifespan of red blood cells, and iatrogenic blood loss. AOP is a common complication in premature infants that can adversely affect growth, development, and long-term neurocognitive outcomes. To standardize the diagnosis and treatment of AOP, the Neonatal Clinical Practice Guidelines Expert Committee and the Neonatal Evidence-Based Medicine Group of the Commission of Neonatal Medicine of the Cross-Strait Medical and Health Exchange Association, along with the Editorial Office of the , have developed the "Clinical practice guidelines for the diagnosis and treatment of anemia of prematurity (2025)", based on the World Health Organization's handbook for guideline development and the formulation/revision principles of Chinese clinical practice guidelines.

View Article and Find Full Text PDF

Mitochondrial Mayhem: How cigarette smoke induces placental dysfunction through MMS19 degradation.

Ecotoxicol Environ Saf

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China. Electronic address:

Cigarette smoke (CS) has detrimental effects on placental growth and embryo development, but the underlying mechanisms remain unclear. This study aims to investigate the impact of CS on trophoblast cell proliferation and regulated cell death (RCD) by examining its interference with iron-sulfur cluster (ISC) proteins and the CIA pathway. Exposure to CS disrupted the cytosolic ISC assembly (CIA) pathway, downregulated ISC proteins, and decreased ISC maturation in the placenta of rats exposed to passive smoking.

View Article and Find Full Text PDF

Introduction: Micronutrient deficiencies are common among women of reproductive age (WRA) and children in Senegal. Large-scale food fortification (LSFF) can help fill gaps in dietary intakes.

Methods: We used household food consumption data to model the contributions of existing LSFF programs (vitamin A-fortified refined oil and iron and folic acid-fortified wheat flour) and the potential contributions of expanding these programs to meeting the micronutrient requirements of WRA (15-49 years) and children (6-59 months).

View Article and Find Full Text PDF

Background: Ferroptosis is a recently studied form of programmed cell death characterized by lipid peroxides accumulation in the cells. This process occurs when a cell's antioxidant capacity is disturbed resulting in the inability of the cell to detoxify the toxic peroxides. Two major components that regulate ferroptosis are cysteine and iron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!