In response to the growing interest of modern society in functional food products, this study attempts to develop a bakery product with high dietary fibre content added in the form of an oat fibre powder. Oat fibre powder with particle sizes of 75 µm (OFP1) and 150 µm (OFP2) was used, substituting 4, 8, 12, 16 and 20% of the flour. The physical properties of the dough and the final bakery products were then measured. Results indicated that dough with added fibre had higher elasticity than the control group. The storage modulus values of dough with OFP1 most closely approximated those of the control group. The addition of OFP1 did not affect significantly the colour compared to the other samples. Increasing the proportion of oat fibre powder resulted in increased firmness, which was most prominent in wheat bread rolls with oat fibre powder of smaller particle sizes. The addition of oat fibre powder with smaller particles resulted in a product with the rheological and colour parameters that more closely resembled control sample.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105627 | PMC |
http://dx.doi.org/10.17113/ftb.54.01.16.4177 | DOI Listing |
Foods
November 2024
Breeding Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia.
Oats are gluten-free cereals rich in dietary fiber, -glucans, phenolic acids, flavonoids, carotenoids, vitamin E, and phytosterols. They have been used in traditional medicine for centuries to treat hyperacidity, acute pancreatitis, burns, and skin inflammation. This study assessed the nutritional and phenolic profile of oat flour (OF) and ground oat husks (OHs) from white, brown, and black hulled oat genotypes, as well as the antioxidant and antimicrobial activity of their extracts.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts, Lowell, MA, USA.
Perfluoroalkyl substances (PFAS) are a major public health concern, in part because several PFAS have elimination half-lives on the order of years and are associated with adverse health outcomes. While PFAS can be transported into bile, their efficient reuptake by intestinal transporter proteins results in minimal fecal elimination. Here, we tested the hypothesis that consumption of oat β-glucan, a dietary supplement known to disrupt the enterohepatic recirculation of bile acids, will reduce PFAS body burdens.
View Article and Find Full Text PDFFood Res Int
December 2024
School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China. Electronic address:
Both oat β-glucans (OGs) and their hydrolyzed counterparts, oat β-gluco-oligosaccharides (OGOs), are dietary fibers indigestible by humans. They serve as substrates for the colonic intestinal flora, exhibiting potential prebiotic properties. This study, through in vitro digestion simulation, found that OGs and OGOs are not degraded and can safely pass through the upper digestive tract to reach the colon.
View Article and Find Full Text PDFBr Poult Sci
November 2024
Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway.
Int J Biol Macromol
December 2024
College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
Insoluble dietary fiber (IDF) is a crucial component of cereals, and IDF from cereal bran (IDF-CB) has been reported to have multiple biological activities. However, the effect of IDF-CB on chronic colitis remains underexplored. The study aimed to investigate the impact of IDFs from wheat bran (WBIDF), rice bran (RBIDF), millet bran (MBIDF) and oat bran (OBIDF) on chronic colitis induced by dextran sulfate sodium (DSS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!