In order to understand a possible etiology of adverse pregnancy outcomes associated with intrauterine influenza virus infection, we examined the effect of influenza virus infection on gene expression of matrix metalloproteinases (MMPs) in cultured amnion epithelial, amnion mesenchymal and chorion trophoblast cells prepared from human fetal membrane tissues by gelatin zymography, Western blotting and reverse transcriptase-PCR. The cells were infected with influenza A (H1N1) virus. The levels of pro-MMP-9 activity in culture supernatants of three types of cells were increased during the period of 24-48 h after the virus infection as compared to those of mock infection. Chorion trophoblast cells spontaneously released a much greater level of pro-MMP-2 activity than amnion epithelial and amnion mesenchymal cells. The cleavage of pro-MMP-2 into an active intermediate form was enhanced in chorion trophoblast cells by the virus infection. The activity levels of MMP-2 and MMP-9 in culture supernatants were consistent with their protein levels. The virus infection induced the mRNA expression of MMP-9, but not MMP-2, in three types of cells. These results suggest that influenza virus infection induces the gene expression of MMP-9 and the cleavage of pro-MMP-2 into an active intermediate form in human fetal membrane cells, resulting in weakening of the membranes through extracellular matrix degradation. Therefore, it is possible that the regulation of MMPs gene expression in fetal membrane cells by influenza virus infection is implicated in a part of the etiology of adverse pregnancy outcomes associated with intrauterine infection with the virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.b16-00093 | DOI Listing |
Med Sci Monit
December 2024
Department of Neurology, HangZhou Third People's Hospital, Hangzhou, Zhejiang, China.
BACKGROUND This study aimed to analyze the risk factors of central nervous system (CNS) infection caused by reactivation of varicella zoster virus (VZV) and provide reference for the prevention and early diagnosis of VZV-associated CNS infection. MATERIAL AND METHODS A prospective study was conducted on 1030 patients with acute herpes zoster (HZ) admitted to our hospital from January 2021 to June 2023. According to clinical manifestations and auxiliary examinations, they were divided into HZ group of 990 patients and VZV-associated CNS infection group of 40 patients.
View Article and Find Full Text PDFRheumatol Int
December 2024
Department of General Practice N2, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.
We discuss the paper recently published in Rheumatology Internationa. This article reflects on the prevalence of autoimmune rheumatic diseases (ARD) during the COVID-19 pandemic (2020-2023) and compares the same with the pre-pandemic period (2016-2019). We assume that SARS-CoV-2 triggers ARD.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biotechnology, Faculty of Agro-industry, Kasetsart University, Bangkok, 10900, Thailand.
Tilapia lake virus (TiLV) disease is highly contagious and causes substantial mortality in tilapia. Currently, no effective treatments or commercial vaccines are available to prevent TiLV infection. In this study, TiLV segment 4 (S4) was cloned into the pET28a(+)vector and transformed into Escherichia coli BL21(DE3).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA.
This study investigated the incidence of new-onset cardiovascular disorders up to 3.5 years post SARS-CoV-2 infection for 56,400 individuals with COVID-19 and 1,093,904 contemporary controls without COVID-19 in the Montefiore Health System (03/11/2020 to 07/01/2023). Outcomes were new incidence of major adverse cardiovascular event (MACE), arrhythmias, inflammatory heart disease, thrombosis, cerebrovascular disorders, ischemic heart disease and other cardiac disorders between 30 days and (up to) 3.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Blood Components and Devices, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, 20993, USA.
Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!