OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers.

Plant Cell Physiol

Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands

Published: July 2016

Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA) signaling pathway. We found that K concentrations in lodicules and flowers of osjar1-2 were significantly elevated compared with the wild type, indicating that K homeostasis may play a role in regulating the closure of rice flowers. The cation/H exchanger (CHX) family from rice was screened for potential K transporters involved as many members of this family in Arabidopsis were exclusively or preferentially expressed in flowers. Expression profiling confirmed that among 17 CHX genes in rice, OsCHX14 was the only member that showed an expression polymorphism, not only in osjar1 mutants but also in RNAi (RNA interference) lines of OsCOI1, another key member of the JA signaling pathway. This suggests that the expression of OsCHX14 is regulated by the JA signaling pathway. Green fluorescent protein (GFP)-tagged OsCHX14 protein was preferentially localized to the endoplasmic reticulum. Promoter-β-glucuronidase (GUS) analysis of transgenic rice revealed that OsCHX14 is mainly expressed in lodicules and the region close by throughout the flowering process. Characterization in yeast and Xenopus laevis oocytes verified that OsCHX14 is able to transport K, Rb and Cs in vivo. Our data suggest that OsCHX14 may play an important role in K homeostasis during flowering in rice.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcw088DOI Listing

Publication Analysis

Top Keywords

osjar1 mutants
12
signaling pathway
12
rice flowers
8
compared wild
8
wild type
8
key member
8
play role
8
oschx14
7
rice
7
flowers
5

Similar Publications

We show that in rice, the amino acid-conjugates of JA precursor, OPDA, may function as a non-canonical signal for the production of phytoalexins in coordination with the innate chitin signaling. The core oxylipins, jasmonic acid (JA) and JA-Ile, are well-known as potent regulators of plant defense against necrotrophic pathogens and/or herbivores. However, recent studies also suggest that other oxylipins, including 12-oxo-phytodienoic acid (OPDA), may contribute to plant defense.

View Article and Find Full Text PDF

Plants produce a broad variety of defensive metabolites to protect themselves against herbivorous insects. Although polyamines have been implicated in various responses to abiotic and biotic stress, there have been no studies focused on amines in response to insect herbivory. By screening for bioactive amines, we identified isopentylamine as a novel type of herbivory-induced compound in rice leaves, which was derived from the amino acid leucine in stable isotope labelling experiments.

View Article and Find Full Text PDF

OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers.

Plant Cell Physiol

July 2016

Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands

Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA) signaling pathway.

View Article and Find Full Text PDF

Jasmonates (JA) are lipid-derived plant hormones. They have been shown to be important regulators of photomorphogenesis, a developmental program in plants, which is activated by light through different red and blue light sensitive photoreceptors. In rice, inhibition of coleoptile growth by light is a central event in photomorphogenesis.

View Article and Find Full Text PDF

The bioactive form of jasmonate is the conjugate of the amino acid isoleucine (Ile) with jasmonic acid (JA), which is biosynthesized in a reaction catalysed by the GH3 enzyme JASMONATE RESISTANT 1 (JAR1). We examined the biochemical properties of OsJAR1 and its involvement in photomorphogenesis of rice (Oryza sativa). OsJAR1 has a similar substrate specificities as its orthologue in Arabidopsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!