Background: DNA methylation may mediate effects of air pollution on cardiovascular disease. The association between long-term air pollution exposure and DNA methylation in monocytes, which are central to atherosclerosis, has not been studied. We investigated the association between long-term ambient air pollution exposure and DNA methylation (candidate sites and global) in monocytes of adults (aged ≥55).
Methods: One-year average ambient fine particulate matter (PM) and oxides of nitrogen (NO) concentrations were predicted at participants' (n = 1,207) addresses using spatiotemporal models. We assessed DNA methylation in circulating monocytes at 1) 2,713 CpG sites associated with mRNA expression of nearby genes and 2) probes mapping to Alu and LINE-1 repetitive elements (surrogates for global DNA methylation) using Illumina's Infinium HumanMethylation450 BeadChip. We used linear regression models adjusted for demographics, smoking, physical activity, socioeconomic status, methyl-nutrients, and technical variables. For significant air pollution-associated methylation sites, we also assessed the association between expression of gene transcripts previously associated with these CpG sites and air pollution.
Results: At a false discovery rate of 0.05, five candidate CpGs (cg20455854, cg07855639, cg07598385, cg17360854, and cg23599683) had methylation significantly associated with PM and none were associated with NO. Cg20455854 had the smallest p-value for the association with PM (p = 2.77 × 10). mRNA expression profiles of genes near three of the PM-associated CpGs (ANKHD1, LGALS2, and ANKRD11) were also significantly associated with PM exposure. Alu and LINE-1 methylation were not associated with long-term air pollution exposure.
Conclusions: We observed novel associations between long-term ambient air pollution exposure and site-specific DNA methylation, but not global DNA methylation, in purified monocytes of a multi-ethnic adult population. Epigenetic markers may provide insights into mechanisms underlying environmental factors in complex diseases like atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131503 | PMC |
http://dx.doi.org/10.1186/s12940-016-0202-4 | DOI Listing |
Mol Biol Rep
January 2025
Department of Pathology and Laboratory Medicine, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA.
Background: Brain intraparenchymal schwannoma is a rare clinical entity, generally curable with adequate resection.
Methods And Results: We describe a case in a male patient first presenting at 19 months of age, the youngest reported age for this lesion. It also appears to be the first case connected to a germline TSC2 p.
Proc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia.
Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.
DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Biological Sciences, Minnesota State University Mankato, Mankato, Minnesota, USA.
Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!