Objective: To compare the biomechanical properties of 2 veterinary locking plates and monocortical screws/polymethylmethacrylate (PMMA) fixation in canine cadaveric cervical vertebral columns.
Study Design: Biomechanical cadaveric study.
Materials: Nineteen cervical vertebral columns (C2-C7) from large breed, skeletally mature, canine cadavers were used. A cortical ring was placed as a disk spacer at C4-C5 in all specimens. Seven vertebral columns were plated at C4-C5 with two 4-hole, 3.5 mm string of pearls plates (SOP) and 6 vertebral columns were plated with two 6-hole, 2.4 mm titanium locking reconstruction plates (Ti recon plate). All screws were placed monocortically. Six vertebral columns had monocortical titanium screws and PMMA (Ti screws/PMMA) placed, tested as part of a prior study.
Methods: Stiffness testing in 3 directions was performed of the unaltered C4-C5 vertebral motion unit and repeated after placement of the disk spacer and implants. Data were compared using a linear mixed model that incorporated data from previously tested spines (Ti screw/PMMA).
Results: The mean (95% CI) stiffness (N/m) in extension for SOP was 407 N/mm (330-503), for Ti recon plate was 284 N/mm (198-407) and for Ti screws/PMMA was 365 N/mm (314-428); in flexion for SOP was 250 N/mm (178-354), for Ti recon plate was 147 N/mm (106-204) and for Ti screws/PMMA was 311 (235-416); in lateral bending for SOP was 528 N/mm (441-633), for Ti recon plate was 633 N/mm (545-735) and for Ti screws/PMMA was 327 N/mm (257-412). There were no significant differences in stiffness between the 3 fixations for any outcome.
Conclusion: Monocortical fixation with two 3.5 mm SOP or two 2.4 mm Ti recon plates may be an alternate fixation to monocortical screws and PMMA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/vsu.12581 | DOI Listing |
Medicine (Baltimore)
January 2025
Second Hospital of the Air Force Medical University, Xi 'an, China.
Background: This study investigates the therapeutic efficacy of dynamic neuromuscular stabilization (DNS) technology paired with Kinesio Taping in patients with persistent nonspecific low back pain, as well as the effect on neuromuscular function and pain self-efficacy.
Methods: A randomized controlled clinical study was conducted to collect clinical data on DNS combined with KT for the treatment of chronic nonspecific low back pain from November 2023 to April 2024. The inclusion criteria were patients with chronic nonspecific lower back pain, aged between 18 and 30 years old, and without serious underlying medical conditions, such as cardiac disease, hypertension, and diabetes.
J Neurosurg Spine
January 2025
3Department of Orthopedic Surgery, Haeundae Bumin Hospital, Busan, South Korea.
Objective: Conventional decompression surgery for beak-type ossification of the posterior longitudinal ligament (OPLL) of the thoracic spine, whether approached anteriorly or posteriorly, poses several challenges, including technical complexity, cerebrospinal fluid leakage, incomplete decompression, and potential neurological deterioration. Therefore, the authors introduce a novel technique, anterior sliding decompression osteotomy (ASDO), for thoracic myelopathy caused by OPLL and evaluate the efficacy and safety of this technique.
Methods: Six patients (4 men and 2 women) who underwent ASDO surgery for beak-type OPLL in the thoracic spine with a follow-up period of at least 2 years were included in the cohort.
J Neurosurg Spine
January 2025
1Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and.
Objective: Smartphones and wearable devices can be effective tools to objectively assess patient mobility and well-being before and after spine surgery. In this retrospective observational study, the authors investigated the relationship between these longitudinal perioperative patient activity data and socioeconomic and demographic correlates, assessing whether smartphone-captured metrics may allow neurosurgeons to distinguish intergroup patterns.
Methods: A multi-institutional retrospective study of patients who underwent spinal decompression with and without fusion between 2017 and 2021 was conducted.
J Neurosurg Spine
January 2025
2Cleveland Clinic Center for Spine Health, Cleveland Clinic, Cleveland; and.
Objective: Spinal fusion is a commonly performed surgical procedure used to relieve pain, deformity, and instability of various spinal pathologies. Although there have been attempts to standardize spinal fusion assessment radiologically, there is currently no unified definition that also considers clinical symptomology. This review attempts to create a more holistic and standardized definition of spinal fusion.
View Article and Find Full Text PDFJ Neurosurg Spine
January 2025
3Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!