Science Signaling Podcast for 15 November 2016: A new type of kinase inhibitor.

Sci Signal

Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA.

Published: November 2016

This Podcast features an interview with Hagit Eldar-Finkelman, author of a Research Article that appears in the 15 November 2016 issue of Science Signaling, about a newly developed inhibitor of glycogen synthase kinase 3 (GSK-3). GSK-3 participates in several signaling networks and has been implicated in various pathologies, including neurodegenerative diseases, cognitive impairments, and cancer. Licht-Murava et al developed L807mts, a substrate-competitive peptide inhibitor that blocks GSK-3 activity through an unusual mechanism. L807mts not only bound to the substrate recognition domain of GSK-3, it was also phosphorylated by the kinase. This phosphorylated form of L807mts remained associated with GSK-3 and inhibited GSK-3 activity. L807mts treatment reduced cellular, cognitive, and behavioral symptoms in a mouse model of Alzheimer's disease. L807mts is an advance in kinase inhibitor development because it is both highly specific and very potent.Listen to Podcast.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.aal2621DOI Listing

Publication Analysis

Top Keywords

science signaling
8
november 2016
8
kinase inhibitor
8
gsk-3 activity
8
gsk-3
6
l807mts
5
signaling podcast
4
podcast november
4
2016 type
4
kinase
4

Similar Publications

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

The Primary Cilia are Associated with the Axon Initial Segment in Neurons.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.

The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.

View Article and Find Full Text PDF

The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice.

View Article and Find Full Text PDF

Senescence is a non-proliferative, survival state that cancer cells can enter to escape therapy. In addition to soluble factors, senescence cells secrete extracellular vesicles (EVs), which are important mediators of intercellular communication. To explore the role of senescent cell-derived EVs (senEVs) in inflammatory responses to senescence, we developed an engraftment-based senescence model in wild-type mice and genetically blocked senEV release in vivo, without significantly affecting soluble mediators.

View Article and Find Full Text PDF

Liver-Secreted Extracellular Vesicles Promote Cirrhosis-Associated Skeletal Muscle Injury Through mtDNA-cGAS/STING Axis.

Adv Sci (Weinh)

January 2025

Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.

Skeletal muscle atrophy (sarcopenia) is a serious complication of liver cirrhosis, and chronic muscle inflammation plays a pivotal role in its pathologenesis. However, the detailed mechanism through which injured liver tissues mediate skeletal muscle inflammatory injury remains elusive. Here, it is reported that injured hepatocytes might secrete mtDNA-enriched extracellular vesicles (EVs) to trigger skeletal muscle inflammation by activating the cGAS-STING pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!