Salmonella enterica serovar Typhimurium is a Gram-negative bacterium with a flexible respiratory capability. Under anaerobic conditions, S. enterica can utilize a range of terminal electron acceptors, including selenate, to sustain respiratory electron transport. The S. enterica selenate reductase is a membrane-bound enzyme encoded by the ynfEFGH-dmsD operon. The active enzyme is predicted to comprise at least three subunits where YnfE is a molybdenum-containing catalytic subunit. The YnfE protein is synthesized with an N-terminal twin-arginine signal peptide and biosynthesis of the enzyme is coordinated by a signal peptide binding chaperone called DmsD. In this work, the interaction between S. enterica DmsD and the YnfE signal peptide has been studied by chemical crosslinking. These experiments were complemented by genetic approaches, which identified the DmsD binding epitope within the YnfE signal peptide. YnfE signal peptide residues L24 and A28 were shown to be important for assembly of an active selenate reductase. Conversely, a random genetic screen identified the DmsD V16 residue as being important for signal peptide recognition and selenate reductase assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5203670PMC
http://dx.doi.org/10.1099/mic.0.000381DOI Listing

Publication Analysis

Top Keywords

signal peptide
28
selenate reductase
16
ynfe signal
12
salmonella enterica
8
identified dmsd
8
signal
7
peptide
7
enterica
5
dmsd
5
ynfe
5

Similar Publications

Peptide hormones in plants.

Mol Hortic

January 2025

Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses.

View Article and Find Full Text PDF

Study on gene expression in the liver at various developmental stages of human embryos.

Front Cell Dev Biol

January 2025

Basic Medical Research Centre, Medical School, Nantong University, Nantong, Jiangsu, China.

Background: The normal development of the liver during human embryonic stages is critical for the functionality of the adult liver. Despite this, the essential genes, biological processes, and signal pathways that drive liver development in human embryos remain poorly understood.

Methods: In this study, liver samples were collected from human embryos at progressive developmental stages, ranging from 2-month-old to 7-month-old.

View Article and Find Full Text PDF

Protein kinases play crucial roles in regulating cellular processes, making real-time visualization of their activity essential for understanding signaling dynamics. While genetically encoded fluorescent biosensors have emerged as powerful tools for studying kinase activity, their development for many kinases remains challenging due to the lack of suitable substrate peptides. Here, we present a novel approach for identifying peptide substrates and demonstrate its effectiveness by developing a biosensor for Protein Kinase N (PKN) activity.

View Article and Find Full Text PDF

Structure and Function Analysis of Microcystin Transport Protein MlrD.

Biochimie

January 2025

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China. Electronic address:

Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear.

View Article and Find Full Text PDF

ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!